diff options
Diffstat (limited to 'newlib/libc/stdlib/ldtoa.c')
-rw-r--r-- | newlib/libc/stdlib/ldtoa.c | 3744 |
1 files changed, 0 insertions, 3744 deletions
diff --git a/newlib/libc/stdlib/ldtoa.c b/newlib/libc/stdlib/ldtoa.c deleted file mode 100644 index 5c2972593..000000000 --- a/newlib/libc/stdlib/ldtoa.c +++ /dev/null @@ -1,3744 +0,0 @@ - /* Extended precision arithmetic functions for long double I/O. - * This program has been placed in the public domain. - */ - -#include <_ansi.h> -#include <reent.h> -#include <string.h> -#include <stdlib.h> -#include "mprec.h" - -/* These are the externally visible entries. */ -/* linux name: long double _IO_strtold (char *, char **); */ -long double _strtold (char *, char **); -char * _ldtoa_r (struct _reent *, long double, int, int, int *, int *, char **); -int _ldcheck (long double *); -#if 0 -void _IO_ldtostr(long double *, char *, int, int, char); -#endif - - /* Number of 16 bit words in external x type format */ - #define NE 10 - - /* Number of 16 bit words in internal format */ - #define NI (NE+3) - - /* Array offset to exponent */ - #define E 1 - - /* Array offset to high guard word */ - #define M 2 - - /* Number of bits of precision */ - #define NBITS ((NI-4)*16) - - /* Maximum number of decimal digits in ASCII conversion - * = NBITS*log10(2) - */ - #define NDEC (NBITS*8/27) - - /* The exponent of 1.0 */ - #define EXONE (0x3fff) - - /* Maximum exponent digits - base 10 */ - #define MAX_EXP_DIGITS 5 - -/* Control structure for long double conversion including rounding precision values. - * rndprc can be set to 80 (if NE=6), 64, 56, 53, or 24 bits. - */ -typedef struct -{ - int rlast; - int rndprc; - int rw; - int re; - int outexpon; - unsigned short rmsk; - unsigned short rmbit; - unsigned short rebit; - unsigned short rbit[NI]; - unsigned short equot[NI]; -} LDPARMS; - -static void esub(short unsigned int *a, short unsigned int *b, short unsigned int *c, LDPARMS *ldp); -static void emul(short unsigned int *a, short unsigned int *b, short unsigned int *c, LDPARMS *ldp); -static void ediv(short unsigned int *a, short unsigned int *b, short unsigned int *c, LDPARMS *ldp); -static int ecmp(short unsigned int *a, short unsigned int *b); -static int enormlz(short unsigned int *x); -static int eshift(short unsigned int *x, int sc); -static void eshup1(register short unsigned int *x); -static void eshup8(register short unsigned int *x); -static void eshup6(register short unsigned int *x); -static void eshdn1(register short unsigned int *x); -static void eshdn8(register short unsigned int *x); -static void eshdn6(register short unsigned int *x); -static void eneg(short unsigned int *x); -static void emov(register short unsigned int *a, register short unsigned int *b); -static void eclear(register short unsigned int *x); -static void einfin(register short unsigned int *x, register LDPARMS *ldp); -static void efloor(short unsigned int *x, short unsigned int *y, LDPARMS *ldp); -static void etoasc(short unsigned int *x, char *string, int ndigs, int outformat, LDPARMS *ldp); - -union uconv -{ - unsigned short pe; - long double d; -}; - -#if LDBL_MANT_DIG == 24 -static void e24toe(short unsigned int *pe, short unsigned int *y, LDPARMS *ldp); -#elif LDBL_MANT_DIG == 53 -static void e53toe(short unsigned int *pe, short unsigned int *y, LDPARMS *ldp); -#elif LDBL_MANT_DIG == 64 -static void e64toe(short unsigned int *pe, short unsigned int *y, LDPARMS *ldp); -#else -static void e113toe(short unsigned int *pe, short unsigned int *y, LDPARMS *ldp); -#endif - -/* econst.c */ -/* e type constants used by high precision check routines */ - -#if NE == 10 -/* 0.0 */ -static unsigned short ezero[NE] = - {0x0000, 0x0000, 0x0000, 0x0000, - 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,}; - -/* 1.0E0 */ -static unsigned short eone[NE] = - {0x0000, 0x0000, 0x0000, 0x0000, - 0x0000, 0x0000, 0x0000, 0x0000, 0x8000, 0x3fff,}; - -#else - -/* 0.0 */ -static unsigned short ezero[NE] = { -0, 0000000,0000000,0000000,0000000,0000000,}; -/* 1.0E0 */ -static unsigned short eone[NE] = { -0, 0000000,0000000,0000000,0100000,0x3fff,}; - -#endif - -/* Debugging routine for displaying errors */ -#ifdef DEBUG -/* Notice: the order of appearance of the following - * messages is bound to the error codes defined - * in mconf.h. - */ -static char *ermsg[7] = { -"unknown", /* error code 0 */ -"domain", /* error code 1 */ -"singularity", /* et seq. */ -"overflow", -"underflow", -"total loss of precision", -"partial loss of precision" -}; -#define mtherr(name, code) printf( "\n%s %s error\n", name, ermsg[code] ); -#else -#define mtherr(name, code) -#endif - -/* ieee.c - * - * Extended precision IEEE binary floating point arithmetic routines - * - * Numbers are stored in C language as arrays of 16-bit unsigned - * short integers. The arguments of the routines are pointers to - * the arrays. - * - * - * External e type data structure, simulates Intel 8087 chip - * temporary real format but possibly with a larger significand: - * - * NE-1 significand words (least significant word first, - * most significant bit is normally set) - * exponent (value = EXONE for 1.0, - * top bit is the sign) - * - * - * Internal data structure of a number (a "word" is 16 bits): - * - * ei[0] sign word (0 for positive, 0xffff for negative) - * ei[1] biased exponent (value = EXONE for the number 1.0) - * ei[2] high guard word (always zero after normalization) - * ei[3] - * to ei[NI-2] significand (NI-4 significand words, - * most significant word first, - * most significant bit is set) - * ei[NI-1] low guard word (0x8000 bit is rounding place) - * - * - * - * Routines for external format numbers - * - * asctoe( string, e ) ASCII string to extended double e type - * asctoe64( string, &d ) ASCII string to long double - * asctoe53( string, &d ) ASCII string to double - * asctoe24( string, &f ) ASCII string to single - * asctoeg( string, e, prec, ldp ) ASCII string to specified precision - * e24toe( &f, e, ldp ) IEEE single precision to e type - * e53toe( &d, e, ldp ) IEEE double precision to e type - * e64toe( &d, e, ldp ) IEEE long double precision to e type - * e113toe( &d, e, ldp ) IEEE long double precision to e type - * eabs(e) absolute value - * eadd( a, b, c ) c = b + a - * eclear(e) e = 0 - * ecmp (a, b) Returns 1 if a > b, 0 if a == b, - * -1 if a < b, -2 if either a or b is a NaN. - * ediv( a, b, c, ldp ) c = b / a - * efloor( a, b, ldp ) truncate to integer, toward -infinity - * efrexp( a, exp, s ) extract exponent and significand - * eifrac( e, &l, frac ) e to long integer and e type fraction - * euifrac( e, &l, frac ) e to unsigned long integer and e type fraction - * einfin( e, ldp ) set e to infinity, leaving its sign alone - * eldexp( a, n, b ) multiply by 2**n - * emov( a, b ) b = a - * emul( a, b, c, ldp ) c = b * a - * eneg(e) e = -e - * eround( a, b ) b = nearest integer value to a - * esub( a, b, c, ldp ) c = b - a - * e24toasc( &f, str, n ) single to ASCII string, n digits after decimal - * e53toasc( &d, str, n ) double to ASCII string, n digits after decimal - * e64toasc( &d, str, n ) long double to ASCII string - * etoasc(e,str,n,fmt,ldp)e to ASCII string, n digits after decimal - * etoe24( e, &f ) convert e type to IEEE single precision - * etoe53( e, &d ) convert e type to IEEE double precision - * etoe64( e, &d ) convert e type to IEEE long double precision - * ltoe( &l, e ) long (32 bit) integer to e type - * ultoe( &l, e ) unsigned long (32 bit) integer to e type - * eisneg( e ) 1 if sign bit of e != 0, else 0 - * eisinf( e ) 1 if e has maximum exponent (non-IEEE) - * or is infinite (IEEE) - * eisnan( e ) 1 if e is a NaN - * esqrt( a, b ) b = square root of a - * - * - * Routines for internal format numbers - * - * eaddm( ai, bi ) add significands, bi = bi + ai - * ecleaz(ei) ei = 0 - * ecleazs(ei) set ei = 0 but leave its sign alone - * ecmpm( ai, bi ) compare significands, return 1, 0, or -1 - * edivm( ai, bi, ldp ) divide significands, bi = bi / ai - * emdnorm(ai,l,s,exp,ldp) normalize and round off - * emovi( a, ai ) convert external a to internal ai - * emovo( ai, a, ldp ) convert internal ai to external a - * emovz( ai, bi ) bi = ai, low guard word of bi = 0 - * emulm( ai, bi, ldp ) multiply significands, bi = bi * ai - * enormlz(ei) left-justify the significand - * eshdn1( ai ) shift significand and guards down 1 bit - * eshdn8( ai ) shift down 8 bits - * eshdn6( ai ) shift down 16 bits - * eshift( ai, n ) shift ai n bits up (or down if n < 0) - * eshup1( ai ) shift significand and guards up 1 bit - * eshup8( ai ) shift up 8 bits - * eshup6( ai ) shift up 16 bits - * esubm( ai, bi ) subtract significands, bi = bi - ai - * - * - * The result is always normalized and rounded to NI-4 word precision - * after each arithmetic operation. - * - * Exception flags are NOT fully supported. - * - * Define USE_INFINITY in mconf.h for support of infinity; otherwise a - * saturation arithmetic is implemented. - * - * Define NANS for support of Not-a-Number items; otherwise the - * arithmetic will never produce a NaN output, and might be confused - * by a NaN input. - * If NaN's are supported, the output of ecmp(a,b) is -2 if - * either a or b is a NaN. This means asking if(ecmp(a,b) < 0) - * may not be legitimate. Use if(ecmp(a,b) == -1) for less-than - * if in doubt. - * Signaling NaN's are NOT supported; they are treated the same - * as quiet NaN's. - * - * Denormals are always supported here where appropriate (e.g., not - * for conversion to DEC numbers). - */ - -/* - * Revision history: - * - * 5 Jan 84 PDP-11 assembly language version - * 6 Dec 86 C language version - * 30 Aug 88 100 digit version, improved rounding - * 15 May 92 80-bit long double support - * 22 Nov 00 Revised to fit into newlib by Jeff Johnston <jjohnstn@redhat.com> - * - * Author: S. L. Moshier. - * - * Copyright (c) 1984,2000 S.L. Moshier - * - * Permission to use, copy, modify, and distribute this software for any - * purpose without fee is hereby granted, provided that this entire notice - * is included in all copies of any software which is or includes a copy - * or modification of this software and in all copies of the supporting - * documentation for such software. - * - * THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR IMPLIED - * WARRANTY. IN PARTICULAR, THE AUTHOR MAKES NO REPRESENTATION - * OR WARRANTY OF ANY KIND CONCERNING THE MERCHANTABILITY OF THIS - * SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR PURPOSE. - * - */ - -#include <stdio.h> -/* #include "\usr\include\stdio.h" */ -/*#include "ehead.h"*/ -/*#include "mconf.h"*/ -/* mconf.h - * - * Common include file for math routines - * - * - * - * SYNOPSIS: - * - * #include "mconf.h" - * - * - * - * DESCRIPTION: - * - * This file contains definitions for error codes that are - * passed to the common error handling routine mtherr() - * (which see). - * - * The file also includes a conditional assembly definition - * for the type of computer arithmetic (IEEE, DEC, Motorola - * IEEE, or UNKnown). - * - * For Digital Equipment PDP-11 and VAX computers, certain - * IBM systems, and others that use numbers with a 56-bit - * significand, the symbol DEC should be defined. In this - * mode, most floating point constants are given as arrays - * of octal integers to eliminate decimal to binary conversion - * errors that might be introduced by the compiler. - * - * For computers, such as IBM PC, that follow the IEEE - * Standard for Binary Floating Point Arithmetic (ANSI/IEEE - * Std 754-1985), the symbol IBMPC should be defined. These - * numbers have 53-bit significands. In this mode, constants - * are provided as arrays of hexadecimal 16 bit integers. - * - * To accommodate other types of computer arithmetic, all - * constants are also provided in a normal decimal radix - * which one can hope are correctly converted to a suitable - * format by the available C language compiler. To invoke - * this mode, the symbol UNK is defined. - * - * An important difference among these modes is a predefined - * set of machine arithmetic constants for each. The numbers - * MACHEP (the machine roundoff error), MAXNUM (largest number - * represented), and several other parameters are preset by - * the configuration symbol. Check the file const.c to - * ensure that these values are correct for your computer. - * - * For ANSI C compatibility, define ANSIC equal to 1. Currently - * this affects only the atan2() function and others that use it. - */ - -/* Constant definitions for math error conditions - */ - -#define DOMAIN 1 /* argument domain error */ -#define SING 2 /* argument singularity */ -#define OVERFLOW 3 /* overflow range error */ -#define UNDERFLOW 4 /* underflow range error */ -#define TLOSS 5 /* total loss of precision */ -#define PLOSS 6 /* partial loss of precision */ - -#define EDOM 33 -#define ERANGE 34 - -typedef struct - { - double r; - double i; - }cmplx; - -/* Type of computer arithmetic */ - -#ifndef DEC -#ifdef __IEEE_LITTLE_ENDIAN -#define IBMPC 1 -#else /* !__IEEE_LITTLE_ENDIAN */ -#define MIEEE 1 -#endif /* !__IEEE_LITTLE_ENDIAN */ -#endif /* !DEC */ - -/* Define 1 for ANSI C atan2() function - * See atan.c and clog.c. - */ -#define ANSIC 1 - -/*define VOLATILE volatile*/ -#define VOLATILE - -#define NANS -#define USE_INFINITY - -/* NaN's require infinity support. */ -#ifdef NANS -#ifndef INFINITY -#define USE_INFINITY -#endif -#endif - -/* This handles 64-bit long ints. */ -#define LONGBITS (8 * sizeof(long)) - - -static void eaddm(short unsigned int *x, short unsigned int *y); -static void esubm(short unsigned int *x, short unsigned int *y); -static void emdnorm(short unsigned int *s, int lost, int subflg, long int exp, int rcntrl, LDPARMS *ldp); -static int asctoeg(char *ss, short unsigned int *y, int oprec, LDPARMS *ldp); -static void enan(short unsigned int *nan, int size); -#if LDBL_MANT_DIG == 24 -static void toe24(short unsigned int *x, short unsigned int *y); -#elif LDBL_MANT_DIG == 53 -static void toe53(short unsigned int *x, short unsigned int *y); -#elif LDBL_MANT_DIG == 64 -static void toe64(short unsigned int *a, short unsigned int *b); -#else -static void toe113(short unsigned int *a, short unsigned int *b); -#endif -static void eiremain(short unsigned int *den, short unsigned int *num, LDPARMS *ldp); -static int ecmpm(register short unsigned int *a, register short unsigned int *b); -static int edivm(short unsigned int *den, short unsigned int *num, LDPARMS *ldp); -static int emulm(short unsigned int *a, short unsigned int *b, LDPARMS *ldp); -static int eisneg(short unsigned int *x); -static int eisinf(short unsigned int *x); -static void emovi(short unsigned int *a, short unsigned int *b); -static void emovo(short unsigned int *a, short unsigned int *b, LDPARMS *ldp); -static void emovz(register short unsigned int *a, register short unsigned int *b); -static void ecleaz(register short unsigned int *xi); -static void eadd1(short unsigned int *a, short unsigned int *b, short unsigned int *c, int subflg, LDPARMS *ldp); -static int eisnan(short unsigned int *x); -static int eiisnan(short unsigned int *x); - -#ifdef DEC -static void etodec(), todec(), dectoe(); -#endif - -/* -; Clear out entire external format number. -; -; unsigned short x[]; -; eclear( x ); -*/ - -static void eclear(register short unsigned int *x) -{ -register int i; - -for( i=0; i<NE; i++ ) - *x++ = 0; -} - - - -/* Move external format number from a to b. - * - * emov( a, b ); - */ - -static void emov(register short unsigned int *a, register short unsigned int *b) -{ -register int i; - -for( i=0; i<NE; i++ ) - *b++ = *a++; -} - - -/* -; Negate external format number -; -; unsigned short x[NE]; -; eneg( x ); -*/ - -static void eneg(short unsigned int *x) -{ - -#ifdef NANS -if( eisnan(x) ) - return; -#endif -x[NE-1] ^= 0x8000; /* Toggle the sign bit */ -} - - - -/* Return 1 if external format number is negative, - * else return zero. - */ -static int eisneg(short unsigned int *x) -{ - -#ifdef NANS -if( eisnan(x) ) - return( 0 ); -#endif -if( x[NE-1] & 0x8000 ) - return( 1 ); -else - return( 0 ); -} - - -/* Return 1 if external format number has maximum possible exponent, - * else return zero. - */ -static int eisinf(short unsigned int *x) -{ - -if( (x[NE-1] & 0x7fff) == 0x7fff ) - { -#ifdef NANS - if( eisnan(x) ) - return( 0 ); -#endif - return( 1 ); - } -else - return( 0 ); -} - -/* Check if e-type number is not a number. - */ -static int eisnan(short unsigned int *x) -{ - -#ifdef NANS -int i; -/* NaN has maximum exponent */ -if( (x[NE-1] & 0x7fff) != 0x7fff ) - return (0); -/* ... and non-zero significand field. */ -for( i=0; i<NE-1; i++ ) - { - if( *x++ != 0 ) - return (1); - } -#endif -return (0); -} - -/* -; Fill entire number, including exponent and significand, with -; largest possible number. These programs implement a saturation -; value that is an ordinary, legal number. A special value -; "infinity" may also be implemented; this would require tests -; for that value and implementation of special rules for arithmetic -; operations involving inifinity. -*/ - -static void einfin(register short unsigned int *x, register LDPARMS *ldp) -{ -register int i; - -#ifdef USE_INFINITY -for( i=0; i<NE-1; i++ ) - *x++ = 0; -*x |= 32767; -ldp = ldp; -#else -for( i=0; i<NE-1; i++ ) - *x++ = 0xffff; -*x |= 32766; -if( ldp->rndprc < NBITS ) - { - if (ldp->rndprc == 113) - { - *(x - 9) = 0; - *(x - 8) = 0; - } - if( ldp->rndprc == 64 ) - { - *(x-5) = 0; - } - if( ldp->rndprc == 53 ) - { - *(x-4) = 0xf800; - } - else - { - *(x-4) = 0; - *(x-3) = 0; - *(x-2) = 0xff00; - } - } -#endif -} - -/* Move in external format number, - * converting it to internal format. - */ -static void emovi(short unsigned int *a, short unsigned int *b) -{ -register unsigned short *p, *q; -int i; - -q = b; -p = a + (NE-1); /* point to last word of external number */ -/* get the sign bit */ -if( *p & 0x8000 ) - *q++ = 0xffff; -else - *q++ = 0; -/* get the exponent */ -*q = *p--; -*q++ &= 0x7fff; /* delete the sign bit */ -#ifdef USE_INFINITY -if( (*(q-1) & 0x7fff) == 0x7fff ) - { -#ifdef NANS - if( eisnan(a) ) - { - *q++ = 0; - for( i=3; i<NI; i++ ) - *q++ = *p--; - return; - } -#endif - for( i=2; i<NI; i++ ) - *q++ = 0; - return; - } -#endif -/* clear high guard word */ -*q++ = 0; -/* move in the significand */ -for( i=0; i<NE-1; i++ ) - *q++ = *p--; -/* clear low guard word */ -*q = 0; -} - - -/* Move internal format number out, - * converting it to external format. - */ -static void emovo(short unsigned int *a, short unsigned int *b, LDPARMS *ldp) -{ -register unsigned short *p, *q; -unsigned short i; - -p = a; -q = b + (NE-1); /* point to output exponent */ -/* combine sign and exponent */ -i = *p++; -if( i ) - *q-- = *p++ | 0x8000; -else - *q-- = *p++; -#ifdef USE_INFINITY -if( *(p-1) == 0x7fff ) - { -#ifdef NANS - if( eiisnan(a) ) - { - enan( b, NBITS ); - return; - } -#endif - einfin(b, ldp); - return; - } -#endif -/* skip over guard word */ -++p; -/* move the significand */ -for( i=0; i<NE-1; i++ ) - *q-- = *p++; -} - - -/* Clear out internal format number. - */ - -static void ecleaz(register short unsigned int *xi) -{ -register int i; - -for( i=0; i<NI; i++ ) - *xi++ = 0; -} - -/* same, but don't touch the sign. */ - -static void ecleazs(register short unsigned int *xi) -{ -register int i; - -++xi; -for(i=0; i<NI-1; i++) - *xi++ = 0; -} - - - - -/* Move internal format number from a to b. - */ -static void emovz(register short unsigned int *a, register short unsigned int *b) -{ -register int i; - -for( i=0; i<NI-1; i++ ) - *b++ = *a++; -/* clear low guard word */ -*b = 0; -} - -/* Return nonzero if internal format number is a NaN. - */ - -static int eiisnan (short unsigned int *x) -{ -int i; - -if( (x[E] & 0x7fff) == 0x7fff ) - { - for( i=M+1; i<NI; i++ ) - { - if( x[i] != 0 ) - return(1); - } - } -return(0); -} - -#if LDBL_MANT_DIG == 64 - -/* Return nonzero if internal format number is infinite. */ -static int -eiisinf (x) - unsigned short x[]; -{ - -#ifdef NANS - if (eiisnan (x)) - return (0); -#endif - if ((x[E] & 0x7fff) == 0x7fff) - return (1); - return (0); -} -#endif /* LDBL_MANT_DIG == 64 */ - -/* -; Compare significands of numbers in internal format. -; Guard words are included in the comparison. -; -; unsigned short a[NI], b[NI]; -; cmpm( a, b ); -; -; for the significands: -; returns +1 if a > b -; 0 if a == b -; -1 if a < b -*/ -static int ecmpm(register short unsigned int *a, register short unsigned int *b) -{ -int i; - -a += M; /* skip up to significand area */ -b += M; -for( i=M; i<NI; i++ ) - { - if( *a++ != *b++ ) - goto difrnt; - } -return(0); - -difrnt: -if( *(--a) > *(--b) ) - return(1); -else - return(-1); -} - - -/* -; Shift significand down by 1 bit -*/ - -static void eshdn1(register short unsigned int *x) -{ -register unsigned short bits; -int i; - -x += M; /* point to significand area */ - -bits = 0; -for( i=M; i<NI; i++ ) - { - if( *x & 1 ) - bits |= 1; - *x >>= 1; - if( bits & 2 ) - *x |= 0x8000; - bits <<= 1; - ++x; - } -} - - - -/* -; Shift significand up by 1 bit -*/ - -static void eshup1(register short unsigned int *x) -{ -register unsigned short bits; -int i; - -x += NI-1; -bits = 0; - -for( i=M; i<NI; i++ ) - { - if( *x & 0x8000 ) - bits |= 1; - *x <<= 1; - if( bits & 2 ) - *x |= 1; - bits <<= 1; - --x; - } -} - - - -/* -; Shift significand down by 8 bits -*/ - -static void eshdn8(register short unsigned int *x) -{ -register unsigned short newbyt, oldbyt; -int i; - -x += M; -oldbyt = 0; -for( i=M; i<NI; i++ ) - { - newbyt = *x << 8; - *x >>= 8; - *x |= oldbyt; - oldbyt = newbyt; - ++x; - } -} - -/* -; Shift significand up by 8 bits -*/ - -static void eshup8(register short unsigned int *x) -{ -int i; -register unsigned short newbyt, oldbyt; - -x += NI-1; -oldbyt = 0; - -for( i=M; i<NI; i++ ) - { - newbyt = *x >> 8; - *x <<= 8; - *x |= oldbyt; - oldbyt = newbyt; - --x; - } -} - -/* -; Shift significand up by 16 bits -*/ - -static void eshup6(register short unsigned int *x) -{ -int i; -register unsigned short *p; - -p = x + M; -x += M + 1; - -for( i=M; i<NI-1; i++ ) - *p++ = *x++; - -*p = 0; -} - -/* -; Shift significand down by 16 bits -*/ - -static void eshdn6(register short unsigned int *x) -{ -int i; -register unsigned short *p; - -x += NI-1; -p = x + 1; - -for( i=M; i<NI-1; i++ ) - *(--p) = *(--x); - -*(--p) = 0; -} - -/* -; Add significands -; x + y replaces y -*/ - -static void eaddm(short unsigned int *x, short unsigned int *y) -{ -register unsigned long a; -int i; -unsigned int carry; - -x += NI-1; -y += NI-1; -carry = 0; -for( i=M; i<NI; i++ ) - { - a = (unsigned long )(*x) + (unsigned long )(*y) + carry; - if( a & 0x10000 ) - carry = 1; - else - carry = 0; - *y = (unsigned short )a; - --x; - --y; - } -} - -/* -; Subtract significands -; y - x replaces y -*/ - -static void esubm(short unsigned int *x, short unsigned int *y) -{ -unsigned long a; -int i; -unsigned int carry; - -x += NI-1; -y += NI-1; -carry = 0; -for( i=M; i<NI; i++ ) - { - a = (unsigned long )(*y) - (unsigned long )(*x) - carry; - if( a & 0x10000 ) - carry = 1; - else - carry = 0; - *y = (unsigned short )a; - --x; - --y; - } -} - - -/* Divide significands */ - - -/* Multiply significand of e-type number b -by 16-bit quantity a, e-type result to c. */ - -static void m16m(short unsigned int a, short unsigned int *b, short unsigned int *c) -{ -register unsigned short *pp; -register unsigned long carry; -unsigned short *ps; -unsigned short p[NI]; -unsigned long aa, m; -int i; - -aa = a; -pp = &p[NI-2]; -*pp++ = 0; -*pp = 0; -ps = &b[NI-1]; - -for( i=M+1; i<NI; i++ ) - { - if( *ps == 0 ) - { - --ps; - --pp; - *(pp-1) = 0; - } - else - { - m = (unsigned long) aa * *ps--; - carry = (m & 0xffff) + *pp; - *pp-- = (unsigned short )carry; - carry = (carry >> 16) + (m >> 16) + *pp; - *pp = (unsigned short )carry; - *(pp-1) = carry >> 16; - } - } -for( i=M; i<NI; i++ ) - c[i] = p[i]; -} - - -/* Divide significands. Neither the numerator nor the denominator -is permitted to have its high guard word nonzero. */ - - -static int edivm(short unsigned int *den, short unsigned int *num, LDPARMS *ldp) -{ -int i; -register unsigned short *p; -unsigned long tnum; -unsigned short j, tdenm, tquot; -unsigned short tprod[NI+1]; -unsigned short *equot = ldp->equot; - -p = &equot[0]; -*p++ = num[0]; -*p++ = num[1]; - -for( i=M; i<NI; i++ ) - { - *p++ = 0; - } -eshdn1( num ); -tdenm = den[M+1]; -for( i=M; i<NI; i++ ) - { - /* Find trial quotient digit (the radix is 65536). */ - tnum = (((unsigned long) num[M]) << 16) + num[M+1]; - - /* Do not execute the divide instruction if it will overflow. */ - if( (tdenm * 0xffffUL) < tnum ) - tquot = 0xffff; - else - tquot = tnum / tdenm; - - /* Prove that the divide worked. */ -/* - tcheck = (unsigned long )tquot * tdenm; - if( tnum - tcheck > tdenm ) - tquot = 0xffff; -*/ - /* Multiply denominator by trial quotient digit. */ - m16m( tquot, den, tprod ); - /* The quotient digit may have been overestimated. */ - if( ecmpm( tprod, num ) > 0 ) - { - tquot -= 1; - esubm( den, tprod ); - if( ecmpm( tprod, num ) > 0 ) - { - tquot -= 1; - esubm( den, tprod ); - } - } -/* - if( ecmpm( tprod, num ) > 0 ) - { - eshow( "tprod", tprod ); - eshow( "num ", num ); - printf( "tnum = %08lx, tden = %04x, tquot = %04x\n", - tnum, den[M+1], tquot ); - } -*/ - esubm( tprod, num ); -/* - if( ecmpm( num, den ) >= 0 ) - { - eshow( "num ", num ); - eshow( "den ", den ); - printf( "tnum = %08lx, tden = %04x, tquot = %04x\n", - tnum, den[M+1], tquot ); - } -*/ - equot[i] = tquot; - eshup6(num); - } -/* test for nonzero remainder after roundoff bit */ -p = &num[M]; -j = 0; -for( i=M; i<NI; i++ ) - { - j |= *p++; - } -if( j ) - j = 1; - -for( i=0; i<NI; i++ ) - num[i] = equot[i]; - -return( (int )j ); -} - - - -/* Multiply significands */ -static int emulm(short unsigned int *a, short unsigned int *b, LDPARMS *ldp) -{ -unsigned short *p, *q; -unsigned short pprod[NI]; -unsigned short j; -int i; -unsigned short *equot = ldp->equot; - -equot[0] = b[0]; -equot[1] = b[1]; -for( i=M; i<NI; i++ ) - equot[i] = 0; - -j = 0; -p = &a[NI-1]; -q = &equot[NI-1]; -for( i=M+1; i<NI; i++ ) - { - if( *p == 0 ) - { - --p; - } - else - { - m16m( *p--, b, pprod ); - eaddm(pprod, equot); - } - j |= *q; - eshdn6(equot); - } - -for( i=0; i<NI; i++ ) - b[i] = equot[i]; - -/* return flag for lost nonzero bits */ -return( (int)j ); -} - - -/* -static void eshow(str, x) -char *str; -unsigned short *x; -{ -int i; - -printf( "%s ", str ); -for( i=0; i<NI; i++ ) - printf( "%04x ", *x++ ); -printf( "\n" ); -} -*/ - - -/* - * Normalize and round off. - * - * The internal format number to be rounded is "s". - * Input "lost" indicates whether the number is exact. - * This is the so-called sticky bit. - * - * Input "subflg" indicates whether the number was obtained - * by a subtraction operation. In that case if lost is nonzero - * then the number is slightly smaller than indicated. - * - * Input "exp" is the biased exponent, which may be negative. - * the exponent field of "s" is ignored but is replaced by - * "exp" as adjusted by normalization and rounding. - * - * Input "rcntrl" is the rounding control. - */ - - -static void emdnorm(short unsigned int *s, int lost, int subflg, long int exp, int rcntrl, LDPARMS *ldp) -{ -int i, j; -unsigned short r; - -/* Normalize */ -j = enormlz( s ); - -/* a blank significand could mean either zero or infinity. */ -#ifndef USE_INFINITY -if( j > NBITS ) - { - ecleazs( s ); - return; - } -#endif -exp -= j; -#ifndef USE_INFINITY -if( exp >= 32767L ) - goto overf; -#else -if( (j > NBITS) && (exp < 32767L) ) - { - ecleazs( s ); - return; - } -#endif -if( exp < 0L ) - { - if( exp > (long )(-NBITS-1) ) - { - j = (int )exp; - i = eshift( s, j ); - if( i ) - lost = 1; - } - else - { - ecleazs( s ); - return; - } - } -/* Round off, unless told not to by rcntrl. */ -if( rcntrl == 0 ) - goto mdfin; -/* Set up rounding parameters if the control register changed. */ -if( ldp->rndprc != ldp->rlast ) - { - ecleaz( ldp->rbit ); - switch( ldp->rndprc ) - { - default: - case NBITS: - ldp->rw = NI-1; /* low guard word */ - ldp->rmsk = 0xffff; - ldp->rmbit = 0x8000; - ldp->rebit = 1; - ldp->re = ldp->rw - 1; - break; - case 113: - ldp->rw = 10; - ldp->rmsk = 0x7fff; - ldp->rmbit = 0x4000; - ldp->rebit = 0x8000; - ldp->re = ldp->rw; - break; - case 64: - ldp->rw = 7; - ldp->rmsk = 0xffff; - ldp->rmbit = 0x8000; - ldp->rebit = 1; - ldp->re = ldp->rw-1; - break; -/* For DEC arithmetic */ - case 56: - ldp->rw = 6; - ldp->rmsk = 0xff; - ldp->rmbit = 0x80; - ldp->rebit = 0x100; - ldp->re = ldp->rw; - break; - case 53: - ldp->rw = 6; - ldp->rmsk = 0x7ff; - ldp->rmbit = 0x0400; - ldp->rebit = 0x800; - ldp->re = ldp->rw; - break; - case 24: - ldp->rw = 4; - ldp->rmsk = 0xff; - ldp->rmbit = 0x80; - ldp->rebit = 0x100; - ldp->re = ldp->rw; - break; - } - ldp->rbit[ldp->re] = ldp->rebit; - ldp->rlast = ldp->rndprc; - } - -/* Shift down 1 temporarily if the data structure has an implied - * most significant bit and the number is denormal. - * For rndprc = 64 or NBITS, there is no implied bit. - * But Intel long double denormals lose one bit of significance even so. - */ -#if IBMPC -if( (exp <= 0) && (ldp->rndprc != NBITS) ) -#else -if( (exp <= 0) && (ldp->rndprc != 64) && (ldp->rndprc != NBITS) ) -#endif - { - lost |= s[NI-1] & 1; - eshdn1(s); - } -/* Clear out all bits below the rounding bit, - * remembering in r if any were nonzero. - */ -r = s[ldp->rw] & ldp->rmsk; -if( ldp->rndprc < NBITS ) - { - i = ldp->rw + 1; - while( i < NI ) - { - if( s[i] ) - r |= 1; - s[i] = 0; - ++i; - } - } -s[ldp->rw] &= ~ldp->rmsk; -if( (r & ldp->rmbit) != 0 ) - { - if( r == ldp->rmbit ) - { - if( lost == 0 ) - { /* round to even */ - if( (s[ldp->re] & ldp->rebit) == 0 ) - goto mddone; - } - else - { - if( subflg != 0 ) - goto mddone; - } - } - eaddm( ldp->rbit, s ); - } -mddone: -#if IBMPC -if( (exp <= 0) && (ldp->rndprc != NBITS) ) -#else -if( (exp <= 0) && (ldp->rndprc != 64) && (ldp->rndprc != NBITS) ) -#endif - { - eshup1(s); - } -if( s[2] != 0 ) - { /* overflow on roundoff */ - eshdn1(s); - exp += 1; - } -mdfin: -s[NI-1] = 0; -if( exp >= 32767L ) - { -#ifndef USE_INFINITY -overf: -#endif -#ifdef USE_INFINITY - s[1] = 32767; - for( i=2; i<NI-1; i++ ) - s[i] = 0; -#else - s[1] = 32766; - s[2] = 0; - for( i=M+1; i<NI-1; i++ ) - s[i] = 0xffff; - s[NI-1] = 0; - if( (ldp->rndprc < 64) || (ldp->rndprc == 113) ) - { - s[ldp->rw] &= ~ldp->rmsk; - if( ldp->rndprc == 24 ) - { - s[5] = 0; - s[6] = 0; - } - } -#endif - return; - } -if( exp < 0 ) - s[1] = 0; -else - s[1] = (unsigned short )exp; -} - - - -/* -; Subtract external format numbers. -; -; unsigned short a[NE], b[NE], c[NE]; -; LDPARMS *ldp; -; esub( a, b, c, ldp ); c = b - a -*/ - -static void esub(short unsigned int *a, short unsigned int *b, short unsigned int *c, LDPARMS *ldp) -{ - -#ifdef NANS -if( eisnan(a) ) - { - emov (a, c); - return; - } -if( eisnan(b) ) - { - emov(b,c); - return; - } -/* Infinity minus infinity is a NaN. - * Test for subtracting infinities of the same sign. - */ -if( eisinf(a) && eisinf(b) && ((eisneg (a) ^ eisneg (b)) == 0)) - { - mtherr( "esub", DOMAIN ); - enan( c, NBITS ); - return; - } -#endif -eadd1( a, b, c, 1, ldp ); -} - - - -static void eadd1(short unsigned int *a, short unsigned int *b, short unsigned int *c, int subflg, LDPARMS *ldp) -{ -unsigned short ai[NI], bi[NI], ci[NI]; -int i, lost, j, k; -long lt, lta, ltb; - -#ifdef USE_INFINITY -if( eisinf(a) ) - { - emov(a,c); - if( subflg ) - eneg(c); - return; - } -if( eisinf(b) ) - { - emov(b,c); - return; - } -#endif -emovi( a, ai ); -emovi( b, bi ); -if( subflg ) - ai[0] = ~ai[0]; - -/* compare exponents */ -lta = ai[E]; -ltb = bi[E]; -lt = lta - ltb; -if( lt > 0L ) - { /* put the larger number in bi */ - emovz( bi, ci ); - emovz( ai, bi ); - emovz( ci, ai ); - ltb = bi[E]; - lt = -lt; - } -lost = 0; -if( lt != 0L ) - { - if( lt < (long )(-NBITS-1) ) - goto done; /* answer same as larger addend */ - k = (int )lt; - lost = eshift( ai, k ); /* shift the smaller number down */ - } -else - { -/* exponents were the same, so must compare significands */ - i = ecmpm( ai, bi ); - if( i == 0 ) - { /* the numbers are identical in magnitude */ - /* if different signs, result is zero */ - if( ai[0] != bi[0] ) - { - eclear(c); - return; - } - /* if same sign, result is double */ - /* double denomalized tiny number */ - if( (bi[E] == 0) && ((bi[3] & 0x8000) == 0) ) - { - eshup1( bi ); - goto done; - } - /* add 1 to exponent unless both are zero! */ - for( j=1; j<NI-1; j++ ) - { - if( bi[j] != 0 ) - { -/* This could overflow, but let emovo take care of that. */ - ltb += 1; - break; - } - } - bi[E] = (unsigned short )ltb; - goto done; - } - if( i > 0 ) - { /* put the larger number in bi */ - emovz( bi, ci ); - emovz( ai, bi ); - emovz( ci, ai ); - } - } -if( ai[0] == bi[0] ) - { - eaddm( ai, bi ); - subflg = 0; - } -else - { - esubm( ai, bi ); - subflg = 1; - } -emdnorm( bi, lost, subflg, ltb, 64, ldp ); - -done: -emovo( bi, c, ldp ); -} - - - -/* -; Divide. -; -; unsigned short a[NE], b[NE], c[NE]; -; LDPARMS *ldp; -; ediv( a, b, c, ldp ); c = b / a -*/ -static void ediv(short unsigned int *a, short unsigned int *b, short unsigned int *c, LDPARMS *ldp) -{ -unsigned short ai[NI], bi[NI]; -int i; -long lt, lta, ltb; - -#ifdef NANS -/* Return any NaN input. */ -if( eisnan(a) ) - { - emov(a,c); - return; - } -if( eisnan(b) ) - { - emov(b,c); - return; - } -/* Zero over zero, or infinity over infinity, is a NaN. */ -if( ((ecmp(a,ezero) == 0) && (ecmp(b,ezero) == 0)) - || (eisinf (a) && eisinf (b)) ) - { - mtherr( "ediv", DOMAIN ); - enan( c, NBITS ); - return; - } -#endif -/* Infinity over anything else is infinity. */ -#ifdef USE_INFINITY -if( eisinf(b) ) - { - if( eisneg(a) ^ eisneg(b) ) - *(c+(NE-1)) = 0x8000; - else - *(c+(NE-1)) = 0; - einfin(c, ldp); - return; - } -if( eisinf(a) ) - { - eclear(c); - return; - } -#endif -emovi( a, ai ); -emovi( b, bi ); -lta = ai[E]; -ltb = bi[E]; -if( bi[E] == 0 ) - { /* See if numerator is zero. */ - for( i=1; i<NI-1; i++ ) - { - if( bi[i] != 0 ) - { - ltb -= enormlz( bi ); - goto dnzro1; - } - } - eclear(c); - return; - } -dnzro1: - -if( ai[E] == 0 ) - { /* possible divide by zero */ - for( i=1; i<NI-1; i++ ) - { - if( ai[i] != 0 ) - { - lta -= enormlz( ai ); - goto dnzro2; - } - } - if( ai[0] == bi[0] ) - *(c+(NE-1)) = 0; - else - *(c+(NE-1)) = 0x8000; - einfin(c, ldp); - mtherr( "ediv", SING ); - return; - } -dnzro2: - -i = edivm( ai, bi, ldp ); -/* calculate exponent */ -lt = ltb - lta + EXONE; -emdnorm( bi, i, 0, lt, 64, ldp ); -/* set the sign */ -if( ai[0] == bi[0] ) - bi[0] = 0; -else - bi[0] = 0Xffff; -emovo( bi, c, ldp ); -} - - - -/* -; Multiply. -; -; unsigned short a[NE], b[NE], c[NE]; -; LDPARMS *ldp -; emul( a, b, c, ldp ); c = b * a -*/ -static void emul(short unsigned int *a, short unsigned int *b, short unsigned int *c, LDPARMS *ldp) -{ -unsigned short ai[NI], bi[NI]; -int i, j; -long lt, lta, ltb; - -#ifdef NANS -/* NaN times anything is the same NaN. */ -if( eisnan(a) ) - { - emov(a,c); - return; - } -if( eisnan(b) ) - { - emov(b,c); - return; - } -/* Zero times infinity is a NaN. */ -if( (eisinf(a) && (ecmp(b,ezero) == 0)) - || (eisinf(b) && (ecmp(a,ezero) == 0)) ) - { - mtherr( "emul", DOMAIN ); - enan( c, NBITS ); - return; - } -#endif -/* Infinity times anything else is infinity. */ -#ifdef USE_INFINITY -if( eisinf(a) || eisinf(b) ) - { - if( eisneg(a) ^ eisneg(b) ) - *(c+(NE-1)) = 0x8000; - else - *(c+(NE-1)) = 0; - einfin(c, ldp); - return; - } -#endif -emovi( a, ai ); -emovi( b, bi ); -lta = ai[E]; -ltb = bi[E]; -if( ai[E] == 0 ) - { - for( i=1; i<NI-1; i++ ) - { - if( ai[i] != 0 ) - { - lta -= enormlz( ai ); - goto mnzer1; - } - } - eclear(c); - return; - } -mnzer1: - -if( bi[E] == 0 ) - { - for( i=1; i<NI-1; i++ ) - { - if( bi[i] != 0 ) - { - ltb -= enormlz( bi ); - goto mnzer2; - } - } - eclear(c); - return; - } -mnzer2: - -/* Multiply significands */ -j = emulm( ai, bi, ldp ); -/* calculate exponent */ -lt = lta + ltb - (EXONE - 1); -emdnorm( bi, j, 0, lt, 64, ldp ); -/* calculate sign of product */ -if( ai[0] == bi[0] ) - bi[0] = 0; -else - bi[0] = 0xffff; -emovo( bi, c, ldp ); -} - - - -#if LDBL_MANT_DIG > 64 -static void e113toe(short unsigned int *pe, short unsigned int *y, LDPARMS *ldp) -{ -register unsigned short r; -unsigned short *e, *p; -unsigned short yy[NI]; -int denorm, i; - -e = pe; -denorm = 0; -ecleaz(yy); -#ifdef IBMPC -e += 7; -#endif -r = *e; -yy[0] = 0; -if( r & 0x8000 ) - yy[0] = 0xffff; -r &= 0x7fff; -#ifdef USE_INFINITY -if( r == 0x7fff ) - { -#ifdef NANS -#ifdef IBMPC - for( i=0; i<7; i++ ) - { - if( pe[i] != 0 ) - { - enan( y, NBITS ); - return; - } - } -#else /* !IBMPC */ - for( i=1; i<8; i++ ) - { - if( pe[i] != 0 ) - { - enan( y, NBITS ); - return; - } - } -#endif /* !IBMPC */ -#endif /* NANS */ - eclear( y ); - einfin( y, ldp ); - if( *e & 0x8000 ) - eneg(y); - return; - } -#endif /* INFINITY */ -yy[E] = r; -p = &yy[M + 1]; -#ifdef IBMPC -for( i=0; i<7; i++ ) - *p++ = *(--e); -#else /* IBMPC */ -++e; -for( i=0; i<7; i++ ) - *p++ = *e++; -#endif /* IBMPC */ -/* If denormal, remove the implied bit; else shift down 1. */ -if( r == 0 ) - { - yy[M] = 0; - } -else - { - yy[M] = 1; - eshift( yy, -1 ); - } -emovo(yy,y,ldp); -} - -/* move out internal format to ieee long double */ -static void toe113(short unsigned int *a, short unsigned int *b) -{ -register unsigned short *p, *q; -unsigned short i; - -#ifdef NANS -if( eiisnan(a) ) - { - enan( b, 113 ); - return; - } -#endif -p = a; -#ifdef MIEEE -q = b; -#else -q = b + 7; /* point to output exponent */ -#endif - -/* If not denormal, delete the implied bit. */ -if( a[E] != 0 ) - { - eshup1 (a); - } -/* combine sign and exponent */ -i = *p++; -#ifdef MIEEE -if( i ) - *q++ = *p++ | 0x8000; -else - *q++ = *p++; -#else -if( i ) - *q-- = *p++ | 0x8000; -else - *q-- = *p++; -#endif -/* skip over guard word */ -++p; -/* move the significand */ -#ifdef MIEEE -for (i = 0; i < 7; i++) - *q++ = *p++; -#else -for (i = 0; i < 7; i++) - *q-- = *p++; -#endif -} -#endif /* LDBL_MANT_DIG > 64 */ - - -#if LDBL_MANT_DIG == 64 -static void e64toe(short unsigned int *pe, short unsigned int *y, LDPARMS *ldp) -{ -unsigned short yy[NI]; -unsigned short *p, *q, *e; -int i; - -e = pe; -p = yy; - -for( i=0; i<NE-5; i++ ) - *p++ = 0; -#ifdef IBMPC -for( i=0; i<5; i++ ) - *p++ = *e++; -#endif -#ifdef DEC -for( i=0; i<5; i++ ) - *p++ = *e++; -#endif -#ifdef MIEEE -p = &yy[0] + (NE-1); -*p-- = *e++; -++e; /* MIEEE skips over 2nd short */ -for( i=0; i<4; i++ ) - *p-- = *e++; -#endif - -#ifdef IBMPC -/* For Intel long double, shift denormal significand up 1 - -- but only if the top significand bit is zero. */ -if((yy[NE-1] & 0x7fff) == 0 && (yy[NE-2] & 0x8000) == 0) - { - unsigned short temp[NI+1]; - emovi(yy, temp); - eshup1(temp); - emovo(temp,y,ldp); - return; - } -#endif -#ifdef USE_INFINITY -/* Point to the exponent field. */ -p = &yy[NE-1]; -if( (*p & 0x7fff) == 0x7fff ) - { -#ifdef NANS -#ifdef IBMPC - for( i=0; i<4; i++ ) - { - if((i != 3 && pe[i] != 0) - /* Check for Intel long double infinity pattern. */ - || (i == 3 && pe[i] != 0x8000)) - { - enan( y, NBITS ); - return; - } - } -#endif -#ifdef MIEEE - for( i=2; i<=5; i++ ) - { - if( pe[i] != 0 ) - { - enan( y, NBITS ); - return; - } - } -#endif -#endif /* NANS */ - eclear( y ); - einfin( y, ldp ); - if( *p & 0x8000 ) - eneg(y); - return; - } -#endif /* USE_INFINITY */ -p = yy; -q = y; -for( i=0; i<NE; i++ ) - *q++ = *p++; -} - -/* move out internal format to ieee long double */ -static void toe64(short unsigned int *a, short unsigned int *b) -{ -register unsigned short *p, *q; -unsigned short i; - -#ifdef NANS -if( eiisnan(a) ) - { - enan( b, 64 ); - return; - } -#endif -#ifdef IBMPC -/* Shift Intel denormal significand down 1. */ -if( a[E] == 0 ) - eshdn1(a); -#endif -p = a; -#ifdef MIEEE -q = b; -#else -q = b + 4; /* point to output exponent */ -/* NOTE: Intel data type is 96 bits wide, clear the last word here. */ -*(q+1)= 0; -#endif - -/* combine sign and exponent */ -i = *p++; -#ifdef MIEEE -if( i ) - *q++ = *p++ | 0x8000; -else - *q++ = *p++; -*q++ = 0; /* leave 2nd short blank */ -#else -if( i ) - *q-- = *p++ | 0x8000; -else - *q-- = *p++; -#endif -/* skip over guard word */ -++p; -/* move the significand */ -#ifdef MIEEE -for( i=0; i<4; i++ ) - *q++ = *p++; -#else -#ifdef USE_INFINITY -#ifdef IBMPC -if (eiisinf (a)) - { - /* Intel long double infinity. */ - *q-- = 0x8000; - *q-- = 0; - *q-- = 0; - *q = 0; - return; - } -#endif /* IBMPC */ -#endif /* USE_INFINITY */ -for( i=0; i<4; i++ ) - *q-- = *p++; -#endif -} - -#endif /* LDBL_MANT_DIG == 64 */ - -#if LDBL_MANT_DIG == 53 -/* -; Convert IEEE double precision to e type -; double d; -; unsigned short x[N+2]; -; e53toe( &d, x ); -*/ -static void e53toe(short unsigned int *pe, short unsigned int *y, LDPARMS *ldp) -{ -#ifdef DEC - -dectoe( pe, y ); /* see etodec.c */ - -#else - -register unsigned short r; -register unsigned short *p, *e; -unsigned short yy[NI]; -int denorm, k; - -e = pe; -denorm = 0; /* flag if denormalized number */ -ecleaz(yy); -#ifdef IBMPC -e += 3; -#endif -#ifdef DEC -e += 3; -#endif -r = *e; -yy[0] = 0; -if( r & 0x8000 ) - yy[0] = 0xffff; -yy[M] = (r & 0x0f) | 0x10; -r &= ~0x800f; /* strip sign and 4 significand bits */ -#ifdef USE_INFINITY -if( r == 0x7ff0 ) - { -#ifdef NANS -#ifdef IBMPC - if( ((pe[3] & 0xf) != 0) || (pe[2] != 0) - || (pe[1] != 0) || (pe[0] != 0) ) - { - enan( y, NBITS ); - return; - } -#else /* !IBMPC */ - if( ((pe[0] & 0xf) != 0) || (pe[1] != 0) - || (pe[2] != 0) || (pe[3] != 0) ) - { - enan( y, NBITS ); - return; - } -#endif /* !IBMPC */ -#endif /* NANS */ - eclear( y ); - einfin( y, ldp ); - if( yy[0] ) - eneg(y); - return; - } -#endif -r >>= 4; -/* If zero exponent, then the significand is denormalized. - * So, take back the understood high significand bit. */ -if( r == 0 ) - { - denorm = 1; - yy[M] &= ~0x10; - } -r += EXONE - 01777; -yy[E] = r; -p = &yy[M+1]; -#ifdef IBMPC -*p++ = *(--e); -*p++ = *(--e); -*p++ = *(--e); -#else /* !IBMPC */ -++e; -*p++ = *e++; -*p++ = *e++; -*p++ = *e++; -#endif /* !IBMPC */ -(void )eshift( yy, -5 ); -if( denorm ) - { /* if zero exponent, then normalize the significand */ - if( (k = enormlz(yy)) > NBITS ) - ecleazs(yy); - else - yy[E] -= (unsigned short )(k-1); - } -emovo( yy, y, ldp ); -#endif /* !DEC */ -} - -/* -; e type to IEEE double precision -; double d; -; unsigned short x[NE]; -; etoe53( x, &d ); -*/ - -#ifdef DEC - -static void etoe53( x, e ) -unsigned short *x, *e; -{ -etodec( x, e ); /* see etodec.c */ -} - -static void toe53( x, y ) -unsigned short *x, *y; -{ -todec( x, y ); -} - -#else - -static void toe53(short unsigned int *x, short unsigned int *y) -{ -unsigned short i; -unsigned short *p; - - -#ifdef NANS -if( eiisnan(x) ) - { - enan( y, 53 ); - return; - } -#endif -p = &x[0]; -#ifdef IBMPC -y += 3; -#endif -#ifdef DEC -y += 3; -#endif -*y = 0; /* output high order */ -if( *p++ ) - *y = 0x8000; /* output sign bit */ - -i = *p++; -if( i >= (unsigned int )2047 ) - { /* Saturate at largest number less than infinity. */ -#ifdef USE_INFINITY - *y |= 0x7ff0; -#ifdef IBMPC - *(--y) = 0; - *(--y) = 0; - *(--y) = 0; -#else /* !IBMPC */ - ++y; - *y++ = 0; - *y++ = 0; - *y++ = 0; -#endif /* IBMPC */ -#else /* !USE_INFINITY */ - *y |= (unsigned short )0x7fef; -#ifdef IBMPC - *(--y) = 0xffff; - *(--y) = 0xffff; - *(--y) = 0xffff; -#else /* !IBMPC */ - ++y; - *y++ = 0xffff; - *y++ = 0xffff; - *y++ = 0xffff; -#endif -#endif /* !USE_INFINITY */ - return; - } -if( i == 0 ) - { - (void )eshift( x, 4 ); - } -else - { - i <<= 4; - (void )eshift( x, 5 ); - } -i |= *p++ & (unsigned short )0x0f; /* *p = xi[M] */ -*y |= (unsigned short )i; /* high order output already has sign bit set */ -#ifdef IBMPC -*(--y) = *p++; -*(--y) = *p++; -*(--y) = *p; -#else /* !IBMPC */ -++y; -*y++ = *p++; -*y++ = *p++; -*y++ = *p++; -#endif /* !IBMPC */ -} - -#endif /* not DEC */ -#endif /* LDBL_MANT_DIG == 53 */ - -#if LDBL_MANT_DIG == 24 -/* -; Convert IEEE single precision to e type -; float d; -; unsigned short x[N+2]; -; dtox( &d, x ); -*/ -void e24toe( short unsigned int *pe, short unsigned int *y, LDPARMS *ldp ) -{ -register unsigned short r; -register unsigned short *p, *e; -unsigned short yy[NI]; -int denorm, k; - -e = pe; -denorm = 0; /* flag if denormalized number */ -ecleaz(yy); -#ifdef IBMPC -e += 1; -#endif -#ifdef DEC -e += 1; -#endif -r = *e; -yy[0] = 0; -if( r & 0x8000 ) - yy[0] = 0xffff; -yy[M] = (r & 0x7f) | 0200; -r &= ~0x807f; /* strip sign and 7 significand bits */ -#ifdef USE_INFINITY -if( r == 0x7f80 ) - { -#ifdef NANS -#ifdef MIEEE - if( ((pe[0] & 0x7f) != 0) || (pe[1] != 0) ) - { - enan( y, NBITS ); - return; - } -#else /* !MIEEE */ - if( ((pe[1] & 0x7f) != 0) || (pe[0] != 0) ) - { - enan( y, NBITS ); - return; - } -#endif /* !MIEEE */ -#endif /* NANS */ - eclear( y ); - einfin( y, ldp ); - if( yy[0] ) - eneg(y); - return; - } -#endif -r >>= 7; -/* If zero exponent, then the significand is denormalized. - * So, take back the understood high significand bit. */ -if( r == 0 ) - { - denorm = 1; - yy[M] &= ~0200; - } -r += EXONE - 0177; -yy[E] = r; -p = &yy[M+1]; -#ifdef IBMPC -*p++ = *(--e); -#endif -#ifdef DEC -*p++ = *(--e); -#endif -#ifdef MIEEE -++e; -*p++ = *e++; -#endif -(void )eshift( yy, -8 ); -if( denorm ) - { /* if zero exponent, then normalize the significand */ - if( (k = enormlz(yy)) > NBITS ) - ecleazs(yy); - else - yy[E] -= (unsigned short )(k-1); - } -emovo( yy, y, ldp ); -} - -static void toe24(short unsigned int *x, short unsigned int *y) -{ -unsigned short i; -unsigned short *p; - -#ifdef NANS -if( eiisnan(x) ) - { - enan( y, 24 ); - return; - } -#endif -p = &x[0]; -#ifdef IBMPC -y += 1; -#endif -#ifdef DEC -y += 1; -#endif -*y = 0; /* output high order */ -if( *p++ ) - *y = 0x8000; /* output sign bit */ - -i = *p++; -if( i >= 255 ) - { /* Saturate at largest number less than infinity. */ -#ifdef USE_INFINITY - *y |= (unsigned short )0x7f80; -#ifdef IBMPC - *(--y) = 0; -#endif -#ifdef DEC - *(--y) = 0; -#endif -#ifdef MIEEE - ++y; - *y = 0; -#endif -#else /* !USE_INFINITY */ - *y |= (unsigned short )0x7f7f; -#ifdef IBMPC - *(--y) = 0xffff; -#endif -#ifdef DEC - *(--y) = 0xffff; -#endif -#ifdef MIEEE - ++y; - *y = 0xffff; -#endif -#endif /* !USE_INFINITY */ - return; - } -if( i == 0 ) - { - (void )eshift( x, 7 ); - } -else - { - i <<= 7; - (void )eshift( x, 8 ); - } -i |= *p++ & (unsigned short )0x7f; /* *p = xi[M] */ -*y |= i; /* high order output already has sign bit set */ -#ifdef IBMPC -*(--y) = *p; -#endif -#ifdef DEC -*(--y) = *p; -#endif -#ifdef MIEEE -++y; -*y = *p; -#endif -} -#endif /* LDBL_MANT_DIG == 24 */ - -/* Compare two e type numbers. - * - * unsigned short a[NE], b[NE]; - * ecmp( a, b ); - * - * returns +1 if a > b - * 0 if a == b - * -1 if a < b - * -2 if either a or b is a NaN. - */ -static int ecmp(short unsigned int *a, short unsigned int *b) -{ -unsigned short ai[NI], bi[NI]; -register unsigned short *p, *q; -register int i; -int msign; - -#ifdef NANS -if (eisnan (a) || eisnan (b)) - return( -2 ); -#endif -emovi( a, ai ); -p = ai; -emovi( b, bi ); -q = bi; - -if( *p != *q ) - { /* the signs are different */ -/* -0 equals + 0 */ - for( i=1; i<NI-1; i++ ) - { - if( ai[i] != 0 ) - goto nzro; - if( bi[i] != 0 ) - goto nzro; - } - return(0); -nzro: - if( *p == 0 ) - return( 1 ); - else - return( -1 ); - } -/* both are the same sign */ -if( *p == 0 ) - msign = 1; -else - msign = -1; -i = NI-1; -do - { - if( *p++ != *q++ ) - { - goto diff; - } - } -while( --i > 0 ); - -return(0); /* equality */ - - - -diff: - -if( *(--p) > *(--q) ) - return( msign ); /* p is bigger */ -else - return( -msign ); /* p is littler */ -} - - -/* -; Shift significand -; -; Shifts significand area up or down by the number of bits -; given by the variable sc. -*/ -static int eshift(short unsigned int *x, int sc) -{ -unsigned short lost; -unsigned short *p; - -if( sc == 0 ) - return( 0 ); - -lost = 0; -p = x + NI-1; - -if( sc < 0 ) - { - sc = -sc; - while( sc >= 16 ) - { - lost |= *p; /* remember lost bits */ - eshdn6(x); - sc -= 16; - } - - while( sc >= 8 ) - { - lost |= *p & 0xff; - eshdn8(x); - sc -= 8; - } - - while( sc > 0 ) - { - lost |= *p & 1; - eshdn1(x); - sc -= 1; - } - } -else - { - while( sc >= 16 ) - { - eshup6(x); - sc -= 16; - } - - while( sc >= 8 ) - { - eshup8(x); - sc -= 8; - } - - while( sc > 0 ) - { - eshup1(x); - sc -= 1; - } - } -if( lost ) - lost = 1; -return( (int )lost ); -} - - - -/* -; normalize -; -; Shift normalizes the significand area pointed to by argument -; shift count (up = positive) is returned. -*/ -static int enormlz(short unsigned int *x) -{ -register unsigned short *p; -int sc; - -sc = 0; -p = &x[M]; -if( *p != 0 ) - goto normdn; -++p; -if( *p & 0x8000 ) - return( 0 ); /* already normalized */ -while( *p == 0 ) - { - eshup6(x); - sc += 16; -/* With guard word, there are NBITS+16 bits available. - * return true if all are zero. - */ - if( sc > NBITS ) - return( sc ); - } -/* see if high byte is zero */ -while( (*p & 0xff00) == 0 ) - { - eshup8(x); - sc += 8; - } -/* now shift 1 bit at a time */ -while( (*p & 0x8000) == 0) - { - eshup1(x); - sc += 1; - if( sc > (NBITS+16) ) - { - mtherr( "enormlz", UNDERFLOW ); - return( sc ); - } - } -return( sc ); - -/* Normalize by shifting down out of the high guard word - of the significand */ -normdn: - -if( *p & 0xff00 ) - { - eshdn8(x); - sc -= 8; - } -while( *p != 0 ) - { - eshdn1(x); - sc -= 1; - - if( sc < -NBITS ) - { - mtherr( "enormlz", OVERFLOW ); - return( sc ); - } - } -return( sc ); -} - - - - -/* Convert e type number to decimal format ASCII string. - * The constants are for 64 bit precision. - */ - -#define NTEN 12 -#define MAXP 4096 - -#if NE == 10 -static unsigned short etens[NTEN + 1][NE] = -{ - {0x6576, 0x4a92, 0x804a, 0x153f, - 0xc94c, 0x979a, 0x8a20, 0x5202, 0xc460, 0x7525,}, /* 10**4096 */ - {0x6a32, 0xce52, 0x329a, 0x28ce, - 0xa74d, 0x5de4, 0xc53d, 0x3b5d, 0x9e8b, 0x5a92,}, /* 10**2048 */ - {0x526c, 0x50ce, 0xf18b, 0x3d28, - 0x650d, 0x0c17, 0x8175, 0x7586, 0xc976, 0x4d48,}, - {0x9c66, 0x58f8, 0xbc50, 0x5c54, - 0xcc65, 0x91c6, 0xa60e, 0xa0ae, 0xe319, 0x46a3,}, - {0x851e, 0xeab7, 0x98fe, 0x901b, - 0xddbb, 0xde8d, 0x9df9, 0xebfb, 0xaa7e, 0x4351,}, - {0x0235, 0x0137, 0x36b1, 0x336c, - 0xc66f, 0x8cdf, 0x80e9, 0x47c9, 0x93ba, 0x41a8,}, - {0x50f8, 0x25fb, 0xc76b, 0x6b71, - 0x3cbf, 0xa6d5, 0xffcf, 0x1f49, 0xc278, 0x40d3,}, - {0x0000, 0x0000, 0x0000, 0x0000, - 0xf020, 0xb59d, 0x2b70, 0xada8, 0x9dc5, 0x4069,}, - {0x0000, 0x0000, 0x0000, 0x0000, - 0x0000, 0x0000, 0x0400, 0xc9bf, 0x8e1b, 0x4034,}, - {0x0000, 0x0000, 0x0000, 0x0000, - 0x0000, 0x0000, 0x0000, 0x2000, 0xbebc, 0x4019,}, - {0x0000, 0x0000, 0x0000, 0x0000, - 0x0000, 0x0000, 0x0000, 0x0000, 0x9c40, 0x400c,}, - {0x0000, 0x0000, 0x0000, 0x0000, - 0x0000, 0x0000, 0x0000, 0x0000, 0xc800, 0x4005,}, - {0x0000, 0x0000, 0x0000, 0x0000, - 0x0000, 0x0000, 0x0000, 0x0000, 0xa000, 0x4002,}, /* 10**1 */ -}; - -static unsigned short emtens[NTEN + 1][NE] = -{ - {0x2030, 0xcffc, 0xa1c3, 0x8123, - 0x2de3, 0x9fde, 0xd2ce, 0x04c8, 0xa6dd, 0x0ad8,}, /* 10**-4096 */ - {0x8264, 0xd2cb, 0xf2ea, 0x12d4, - 0x4925, 0x2de4, 0x3436, 0x534f, 0xceae, 0x256b,}, /* 10**-2048 */ - {0xf53f, 0xf698, 0x6bd3, 0x0158, - 0x87a6, 0xc0bd, 0xda57, 0x82a5, 0xa2a6, 0x32b5,}, - {0xe731, 0x04d4, 0xe3f2, 0xd332, - 0x7132, 0xd21c, 0xdb23, 0xee32, 0x9049, 0x395a,}, - {0xa23e, 0x5308, 0xfefb, 0x1155, - 0xfa91, 0x1939, 0x637a, 0x4325, 0xc031, 0x3cac,}, - {0xe26d, 0xdbde, 0xd05d, 0xb3f6, - 0xac7c, 0xe4a0, 0x64bc, 0x467c, 0xddd0, 0x3e55,}, - {0x2a20, 0x6224, 0x47b3, 0x98d7, - 0x3f23, 0xe9a5, 0xa539, 0xea27, 0xa87f, 0x3f2a,}, - {0x0b5b, 0x4af2, 0xa581, 0x18ed, - 0x67de, 0x94ba, 0x4539, 0x1ead, 0xcfb1, 0x3f94,}, - {0xbf71, 0xa9b3, 0x7989, 0xbe68, - 0x4c2e, 0xe15b, 0xc44d, 0x94be, 0xe695, 0x3fc9,}, - {0x3d4d, 0x7c3d, 0x36ba, 0x0d2b, - 0xfdc2, 0xcefc, 0x8461, 0x7711, 0xabcc, 0x3fe4,}, - {0xc155, 0xa4a8, 0x404e, 0x6113, - 0xd3c3, 0x652b, 0xe219, 0x1758, 0xd1b7, 0x3ff1,}, - {0xd70a, 0x70a3, 0x0a3d, 0xa3d7, - 0x3d70, 0xd70a, 0x70a3, 0x0a3d, 0xa3d7, 0x3ff8,}, - {0xcccd, 0xcccc, 0xcccc, 0xcccc, - 0xcccc, 0xcccc, 0xcccc, 0xcccc, 0xcccc, 0x3ffb,}, /* 10**-1 */ -}; -#else -static unsigned short etens[NTEN+1][NE] = { -{0xc94c,0x979a,0x8a20,0x5202,0xc460,0x7525,},/* 10**4096 */ -{0xa74d,0x5de4,0xc53d,0x3b5d,0x9e8b,0x5a92,},/* 10**2048 */ -{0x650d,0x0c17,0x8175,0x7586,0xc976,0x4d48,}, -{0xcc65,0x91c6,0xa60e,0xa0ae,0xe319,0x46a3,}, -{0xddbc,0xde8d,0x9df9,0xebfb,0xaa7e,0x4351,}, -{0xc66f,0x8cdf,0x80e9,0x47c9,0x93ba,0x41a8,}, -{0x3cbf,0xa6d5,0xffcf,0x1f49,0xc278,0x40d3,}, -{0xf020,0xb59d,0x2b70,0xada8,0x9dc5,0x4069,}, -{0x0000,0x0000,0x0400,0xc9bf,0x8e1b,0x4034,}, -{0x0000,0x0000,0x0000,0x2000,0xbebc,0x4019,}, -{0x0000,0x0000,0x0000,0x0000,0x9c40,0x400c,}, -{0x0000,0x0000,0x0000,0x0000,0xc800,0x4005,}, -{0x0000,0x0000,0x0000,0x0000,0xa000,0x4002,}, /* 10**1 */ -}; - -static unsigned short emtens[NTEN+1][NE] = { -{0x2de4,0x9fde,0xd2ce,0x04c8,0xa6dd,0x0ad8,}, /* 10**-4096 */ -{0x4925,0x2de4,0x3436,0x534f,0xceae,0x256b,}, /* 10**-2048 */ -{0x87a6,0xc0bd,0xda57,0x82a5,0xa2a6,0x32b5,}, -{0x7133,0xd21c,0xdb23,0xee32,0x9049,0x395a,}, -{0xfa91,0x1939,0x637a,0x4325,0xc031,0x3cac,}, -{0xac7d,0xe4a0,0x64bc,0x467c,0xddd0,0x3e55,}, -{0x3f24,0xe9a5,0xa539,0xea27,0xa87f,0x3f2a,}, -{0x67de,0x94ba,0x4539,0x1ead,0xcfb1,0x3f94,}, -{0x4c2f,0xe15b,0xc44d,0x94be,0xe695,0x3fc9,}, -{0xfdc2,0xcefc,0x8461,0x7711,0xabcc,0x3fe4,}, -{0xd3c3,0x652b,0xe219,0x1758,0xd1b7,0x3ff1,}, -{0x3d71,0xd70a,0x70a3,0x0a3d,0xa3d7,0x3ff8,}, -{0xcccd,0xcccc,0xcccc,0xcccc,0xcccc,0x3ffb,}, /* 10**-1 */ -}; -#endif - - - -/* ASCII string outputs for unix */ - - -#if 0 -void _IO_ldtostr(x, string, ndigs, flags, fmt) -long double *x; -char *string; -int ndigs; -int flags; -char fmt; -{ -unsigned short w[NI]; -char *t, *u; -LDPARMS rnd; -LDPARMS *ldp = &rnd; - -rnd.rlast = -1; -rnd.rndprc = NBITS; - -if (sizeof(long double) == 16) - e113toe( (unsigned short *)x, w, ldp ); -else - e64toe( (unsigned short *)x, w, ldp ); - -etoasc( w, string, ndigs, -1, ldp ); -if( ndigs == 0 && flags == 0 ) - { - /* Delete the decimal point unless alternate format. */ - t = string; - while( *t != '.' ) - ++t; - u = t + 1; - while( *t != '\0' ) - *t++ = *u++; - } -if (*string == ' ') - { - t = string; - u = t + 1; - while( *t != '\0' ) - *t++ = *u++; - } -if (fmt == 'E') - { - t = string; - while( *t != 'e' ) - ++t; - *t = 'E'; - } -} - -#endif - -/* This routine will not return more than NDEC+1 digits. */ - -char * -_ldtoa_r (struct _reent *ptr, long double d, int mode, int ndigits, int *decpt, - int *sign, char **rve) -{ -unsigned short e[NI]; -char *s, *p; -int i, j, k; -int orig_ndigits; -LDPARMS rnd; -LDPARMS *ldp = &rnd; -char *outstr; -char outbuf[NDEC + MAX_EXP_DIGITS + 10]; -union uconv du; -du.d = d; - -orig_ndigits = ndigits; -rnd.rlast = -1; -rnd.rndprc = NBITS; - - _REENT_CHECK_MP(ptr); - -/* reentrancy addition to use mprec storage pool */ -if (_REENT_MP_RESULT(ptr)) - { - _REENT_MP_RESULT(ptr)->_k = _REENT_MP_RESULT_K(ptr); - _REENT_MP_RESULT(ptr)->_maxwds = 1 << _REENT_MP_RESULT_K(ptr); - Bfree (ptr, _REENT_MP_RESULT(ptr)); - _REENT_MP_RESULT(ptr) = 0; - } - -#if LDBL_MANT_DIG == 24 -e24toe( &du.pe, e, ldp ); -#elif LDBL_MANT_DIG == 53 -e53toe( &du.pe, e, ldp ); -#elif LDBL_MANT_DIG == 64 -e64toe( &du.pe, e, ldp ); -#else -e113toe( &du.pe, e, ldp ); -#endif - -if( eisneg(e) ) - *sign = 1; -else - *sign = 0; -/* Mode 3 is "f" format. */ -if( mode != 3 ) - ndigits -= 1; -/* Mode 0 is for %.999 format, which is supposed to give a - minimum length string that will convert back to the same binary value. - For now, just ask for 20 digits which is enough but sometimes too many. */ -if( mode == 0 ) - ndigits = 20; - -/* This sanity limit must agree with the corresponding one in etoasc, to - keep straight the returned value of outexpon. */ -if( ndigits > NDEC ) - ndigits = NDEC; - -etoasc( e, outbuf, ndigits, mode, ldp ); -s = outbuf; -if( eisinf(e) || eisnan(e) ) - { - *decpt = 9999; - goto stripspaces; - } -*decpt = ldp->outexpon + 1; - -/* Transform the string returned by etoasc into what the caller wants. */ - -/* Look for decimal point and delete it from the string. */ -s = outbuf; -while( *s != '\0' ) - { - if( *s == '.' ) - goto yesdecpt; - ++s; - } -goto nodecpt; - -yesdecpt: - -/* Delete the decimal point. */ -while( *s != '\0' ) - { - *s = *(s+1); - ++s; - } - -nodecpt: - -/* Back up over the exponent field. */ -while( *s != 'E' && s > outbuf) - --s; -*s = '\0'; - -stripspaces: - -/* Strip leading spaces and sign. */ -p = outbuf; -while( *p == ' ' || *p == '-') - ++p; - -/* Find new end of string. */ -s = outbuf; -while( (*s++ = *p++) != '\0' ) - ; ---s; - -/* Strip trailing zeros. */ -if( mode == 2 ) - k = 1; -else if( ndigits > ldp->outexpon ) - k = ndigits; -else - k = ldp->outexpon; - -while( *(s-1) == '0' && ((s - outbuf) > k)) - *(--s) = '\0'; - -/* In f format, flush small off-scale values to zero. - Rounding has been taken care of by etoasc. */ -if( mode == 3 && ((ndigits + ldp->outexpon) < 0)) - { - s = outbuf; - *s = '\0'; - *decpt = 0; - } - -/* reentrancy addition to use mprec storage pool */ -/* we want to have enough space to hold the formatted result */ - -if (mode == 3) /* f format, account for sign + dec digits + decpt + frac */ - i = *decpt + orig_ndigits + 3; -else /* account for sign + max precision digs + E + exp sign + exponent */ - i = orig_ndigits + MAX_EXP_DIGITS + 4; - -j = sizeof (__ULong); -for (_REENT_MP_RESULT_K(ptr) = 0; sizeof (_Bigint) - sizeof (__ULong) + j <= i; j <<= 1) - _REENT_MP_RESULT_K(ptr)++; -_REENT_MP_RESULT(ptr) = Balloc (ptr, _REENT_MP_RESULT_K(ptr)); - -/* Copy from internal temporary buffer to permanent buffer. */ -outstr = (char *)_REENT_MP_RESULT(ptr); -strcpy (outstr, outbuf); - -if( rve ) - *rve = outstr + (s - outbuf); - -return outstr; -} - -/* Routine used to tell if long double is NaN or Infinity or regular number. - Returns: 0 = regular number - 1 = Nan - 2 = Infinity -*/ -int -_ldcheck (long double *d) -{ -unsigned short e[NI]; -LDPARMS rnd; -LDPARMS *ldp = &rnd; - -union uconv du; - -rnd.rlast = -1; -rnd.rndprc = NBITS; -du.d = *d; -#if LDBL_MANT_DIG == 24 -e24toe( &du.pe, e, ldp ); -#elif LDBL_MANT_DIG == 53 -e53toe( &du.pe, e, ldp ); -#elif LDBL_MANT_DIG == 64 -e64toe( &du.pe, e, ldp ); -#else -e113toe( &du.pe, e, ldp ); -#endif - -if( (e[NE-1] & 0x7fff) == 0x7fff ) - { -#ifdef NANS - if( eisnan(e) ) - return( 1 ); -#endif - return( 2 ); - } -else - return( 0 ); -} /* _ldcheck */ - -static void etoasc(short unsigned int *x, char *string, int ndigits, int outformat, LDPARMS *ldp) -{ -long digit; -unsigned short y[NI], t[NI], u[NI], w[NI]; -unsigned short *p, *r, *ten; -unsigned short sign; -int i, j, k, expon, rndsav, ndigs; -char *s, *ss; -unsigned short m; -unsigned short *equot = ldp->equot; - -ndigs = ndigits; -rndsav = ldp->rndprc; -#ifdef NANS -if( eisnan(x) ) - { - sprintf( string, " NaN " ); - expon = 9999; - goto bxit; - } -#endif -ldp->rndprc = NBITS; /* set to full precision */ -emov( x, y ); /* retain external format */ -if( y[NE-1] & 0x8000 ) - { - sign = 0xffff; - y[NE-1] &= 0x7fff; - } -else - { - sign = 0; - } -expon = 0; -ten = &etens[NTEN][0]; -emov( eone, t ); -/* Test for zero exponent */ -if( y[NE-1] == 0 ) - { - for( k=0; k<NE-1; k++ ) - { - if( y[k] != 0 ) - goto tnzro; /* denormalized number */ - } - goto isone; /* legal all zeros */ - } -tnzro: - -/* Test for infinity. - */ -if( y[NE-1] == 0x7fff ) - { - if( sign ) - sprintf( string, " -Infinity " ); - else - sprintf( string, " Infinity " ); - expon = 9999; - goto bxit; - } - -/* Test for exponent nonzero but significand denormalized. - * This is an error condition. - */ -if( (y[NE-1] != 0) && ((y[NE-2] & 0x8000) == 0) ) - { - mtherr( "etoasc", DOMAIN ); - sprintf( string, "NaN" ); - expon = 9999; - goto bxit; - } - -/* Compare to 1.0 */ -i = ecmp( eone, y ); -if( i == 0 ) - goto isone; - -if( i < 0 ) - { /* Number is greater than 1 */ -/* Convert significand to an integer and strip trailing decimal zeros. */ - emov( y, u ); - u[NE-1] = EXONE + NBITS - 1; - - p = &etens[NTEN-4][0]; - m = 16; -do - { - ediv( p, u, t, ldp ); - efloor( t, w, ldp ); - for( j=0; j<NE-1; j++ ) - { - if( t[j] != w[j] ) - goto noint; - } - emov( t, u ); - expon += (int )m; -noint: - p += NE; - m >>= 1; - } -while( m != 0 ); - -/* Rescale from integer significand */ - u[NE-1] += y[NE-1] - (unsigned int )(EXONE + NBITS - 1); - emov( u, y ); -/* Find power of 10 */ - emov( eone, t ); - m = MAXP; - p = &etens[0][0]; - while( ecmp( ten, u ) <= 0 ) - { - if( ecmp( p, u ) <= 0 ) - { - ediv( p, u, u, ldp ); - emul( p, t, t, ldp ); - expon += (int )m; - } - m >>= 1; - if( m == 0 ) - break; - p += NE; - } - } -else - { /* Number is less than 1.0 */ -/* Pad significand with trailing decimal zeros. */ - if( y[NE-1] == 0 ) - { - while( (y[NE-2] & 0x8000) == 0 ) - { - emul( ten, y, y, ldp ); - expon -= 1; - } - } - else - { - emovi( y, w ); - for( i=0; i<NDEC+1; i++ ) - { - if( (w[NI-1] & 0x7) != 0 ) - break; -/* multiply by 10 */ - emovz( w, u ); - eshdn1( u ); - eshdn1( u ); - eaddm( w, u ); - u[1] += 3; - while( u[2] != 0 ) - { - eshdn1(u); - u[1] += 1; - } - if( u[NI-1] != 0 ) - break; - if( eone[NE-1] <= u[1] ) - break; - emovz( u, w ); - expon -= 1; - } - emovo( w, y, ldp ); - } - k = -MAXP; - p = &emtens[0][0]; - r = &etens[0][0]; - emov( y, w ); - emov( eone, t ); - while( ecmp( eone, w ) > 0 ) - { - if( ecmp( p, w ) >= 0 ) - { - emul( r, w, w, ldp ); - emul( r, t, t, ldp ); - expon += k; - } - k /= 2; - if( k == 0 ) - break; - p += NE; - r += NE; - } - ediv( t, eone, t, ldp ); - } -isone: -/* Find the first (leading) digit. */ -emovi( t, w ); -emovz( w, t ); -emovi( y, w ); -emovz( w, y ); -eiremain( t, y, ldp ); -digit = equot[NI-1]; -while( (digit == 0) && (ecmp(y,ezero) != 0) ) - { - eshup1( y ); - emovz( y, u ); - eshup1( u ); - eshup1( u ); - eaddm( u, y ); - eiremain( t, y, ldp ); - digit = equot[NI-1]; - expon -= 1; - } -s = string; -if( sign ) - *s++ = '-'; -else - *s++ = ' '; -/* Examine number of digits requested by caller. */ -if( outformat == 3 ) - ndigs += expon; -/* -else if( ndigs < 0 ) - ndigs = 0; -*/ -if( ndigs > NDEC ) - ndigs = NDEC; -if( digit == 10 ) - { - *s++ = '1'; - *s++ = '.'; - if( ndigs > 0 ) - { - *s++ = '0'; - ndigs -= 1; - } - expon += 1; - if( ndigs < 0 ) - { - ss = s; - goto doexp; - } - } -else - { - *s++ = (char )digit + '0'; - *s++ = '.'; - } -/* Generate digits after the decimal point. */ -for( k=0; k<=ndigs; k++ ) - { -/* multiply current number by 10, without normalizing */ - eshup1( y ); - emovz( y, u ); - eshup1( u ); - eshup1( u ); - eaddm( u, y ); - eiremain( t, y, ldp ); - *s++ = (char )equot[NI-1] + '0'; - } -digit = equot[NI-1]; ---s; -ss = s; -/* round off the ASCII string */ -if( digit > 4 ) - { -/* Test for critical rounding case in ASCII output. */ - if( digit == 5 ) - { - emovo( y, t, ldp ); - if( ecmp(t,ezero) != 0 ) - goto roun; /* round to nearest */ - if( ndigs < 0 || (*(s-1-(*(s-1)=='.')) & 1) == 0 ) - goto doexp; /* round to even */ - } -/* Round up and propagate carry-outs */ -roun: - --s; - k = *s & 0x7f; -/* Carry out to most significant digit? */ - if( ndigs < 0 ) - { - /* This will print like "1E-6". */ - *s = '1'; - expon += 1; - goto doexp; - } - else if( k == '.' ) - { - --s; - k = *s; - k += 1; - *s = (char )k; -/* Most significant digit carries to 10? */ - if( k > '9' ) - { - expon += 1; - *s = '1'; - } - goto doexp; - } -/* Round up and carry out from less significant digits */ - k += 1; - *s = (char )k; - if( k > '9' ) - { - *s = '0'; - goto roun; - } - } -doexp: -#ifdef __GO32__ -if( expon >= 0 ) - sprintf( ss, "e+%02d", expon ); -else - sprintf( ss, "e-%02d", -expon ); -#else - sprintf( ss, "E%d", expon ); -#endif -bxit: -ldp->rndprc = rndsav; -ldp->outexpon = expon; -} - - - - -/* -; ASCTOQ -; ASCTOQ.MAC LATEST REV: 11 JAN 84 -; SLM, 3 JAN 78 -; -; Convert ASCII string to quadruple precision floating point -; -; Numeric input is free field decimal number -; with max of 15 digits with or without -; decimal point entered as ASCII from teletype. -; Entering E after the number followed by a second -; number causes the second number to be interpreted -; as a power of 10 to be multiplied by the first number -; (i.e., "scientific" notation). -; -; Usage: -; asctoq( string, q ); -*/ - -long double _strtold (char *s, char **se) -{ - union uconv x; - LDPARMS rnd; - LDPARMS *ldp = &rnd; - int lenldstr; - - rnd.rlast = -1; - rnd.rndprc = NBITS; - - lenldstr = asctoeg( s, &x.pe, LDBL_MANT_DIG, ldp ); - if (se) - *se = s + lenldstr; - return x.d; -} - -#define REASONABLE_LEN 200 - -static int -asctoeg(char *ss, short unsigned int *y, int oprec, LDPARMS *ldp) -{ -unsigned short yy[NI], xt[NI], tt[NI]; -int esign, decflg, sgnflg, nexp, exp, prec, lost; -int k, trail, c, rndsav; -long lexp; -unsigned short nsign, *p; -char *sp, *s, *lstr; -int lenldstr; -int mflag = 0; -char tmpstr[REASONABLE_LEN]; - -/* Copy the input string. */ -c = strlen (ss) + 2; -if (c <= REASONABLE_LEN) - lstr = tmpstr; -else - { - lstr = (char *) calloc (c, 1); - mflag = 1; - } -s = ss; -lenldstr = 0; -while( *s == ' ' ) /* skip leading spaces */ - { - ++s; - ++lenldstr; - } -sp = lstr; -for( k=0; k<c; k++ ) - { - if( (*sp++ = *s++) == '\0' ) - break; - } -*sp = '\0'; -s = lstr; - -rndsav = ldp->rndprc; -ldp->rndprc = NBITS; /* Set to full precision */ -lost = 0; -nsign = 0; -decflg = 0; -sgnflg = 0; -nexp = 0; -exp = 0; -prec = 0; -ecleaz( yy ); -trail = 0; - -nxtcom: -k = *s - '0'; -if( (k >= 0) && (k <= 9) ) - { -/* Ignore leading zeros */ - if( (prec == 0) && (decflg == 0) && (k == 0) ) - goto donchr; -/* Identify and strip trailing zeros after the decimal point. */ - if( (trail == 0) && (decflg != 0) ) - { - sp = s; - while( (*sp >= '0') && (*sp <= '9') ) - ++sp; -/* Check for syntax error */ - c = *sp & 0x7f; - if( (c != 'e') && (c != 'E') && (c != '\0') - && (c != '\n') && (c != '\r') && (c != ' ') - && (c != ',') ) - goto error; - --sp; - while( *sp == '0' ) - *sp-- = 'z'; - trail = 1; - if( *s == 'z' ) - goto donchr; - } -/* If enough digits were given to more than fill up the yy register, - * continuing until overflow into the high guard word yy[2] - * guarantees that there will be a roundoff bit at the top - * of the low guard word after normalization. - */ - if( yy[2] == 0 ) - { - if( decflg ) - nexp += 1; /* count digits after decimal point */ - eshup1( yy ); /* multiply current number by 10 */ - emovz( yy, xt ); - eshup1( xt ); - eshup1( xt ); - eaddm( xt, yy ); - ecleaz( xt ); - xt[NI-2] = (unsigned short )k; - eaddm( xt, yy ); - } - else - { - /* Mark any lost non-zero digit. */ - lost |= k; - /* Count lost digits before the decimal point. */ - if (decflg == 0) - nexp -= 1; - } - prec += 1; - goto donchr; - } - -switch( *s ) - { - case 'z': - break; - case 'E': - case 'e': - goto expnt; - case '.': /* decimal point */ - if( decflg ) - goto error; - ++decflg; - break; - case '-': - nsign = 0xffff; - if( sgnflg ) - goto error; - ++sgnflg; - break; - case '+': - if( sgnflg ) - goto error; - ++sgnflg; - break; - case ',': - case ' ': - case '\0': - case '\n': - case '\r': - goto daldone; - case 'i': - case 'I': - goto infinite; - default: - error: -#ifdef NANS - enan( yy, NI*16 ); -#else - mtherr( "asctoe", DOMAIN ); - ecleaz(yy); -#endif - goto aexit; - } -donchr: -++s; -goto nxtcom; - -/* Exponent interpretation */ -expnt: - -esign = 1; -exp = 0; -++s; -/* check for + or - */ -if( *s == '-' ) - { - esign = -1; - ++s; - } -if( *s == '+' ) - ++s; -while( (*s >= '0') && (*s <= '9') ) - { - exp *= 10; - exp += *s++ - '0'; - if (exp > 4977) - { - if (esign < 0) - goto zero; - else - goto infinite; - } - } -if( esign < 0 ) - exp = -exp; -if( exp > 4932 ) - { -infinite: - ecleaz(yy); - yy[E] = 0x7fff; /* infinity */ - goto aexit; - } -if( exp < -4977 ) - { -zero: - ecleaz(yy); - goto aexit; - } - -daldone: -nexp = exp - nexp; -/* Pad trailing zeros to minimize power of 10, per IEEE spec. */ -while( (nexp > 0) && (yy[2] == 0) ) - { - emovz( yy, xt ); - eshup1( xt ); - eshup1( xt ); - eaddm( yy, xt ); - eshup1( xt ); - if( xt[2] != 0 ) - break; - nexp -= 1; - emovz( xt, yy ); - } -if( (k = enormlz(yy)) > NBITS ) - { - ecleaz(yy); - goto aexit; - } -lexp = (EXONE - 1 + NBITS) - k; -emdnorm( yy, lost, 0, lexp, 64, ldp ); -/* convert to external format */ - - -/* Multiply by 10**nexp. If precision is 64 bits, - * the maximum relative error incurred in forming 10**n - * for 0 <= n <= 324 is 8.2e-20, at 10**180. - * For 0 <= n <= 999, the peak relative error is 1.4e-19 at 10**947. - * For 0 >= n >= -999, it is -1.55e-19 at 10**-435. - */ -lexp = yy[E]; -if( nexp == 0 ) - { - k = 0; - goto expdon; - } -esign = 1; -if( nexp < 0 ) - { - nexp = -nexp; - esign = -1; - if( nexp > 4096 ) - { /* Punt. Can't handle this without 2 divides. */ - emovi( etens[0], tt ); - lexp -= tt[E]; - k = edivm( tt, yy, ldp ); - lexp += EXONE; - nexp -= 4096; - } - } -p = &etens[NTEN][0]; -emov( eone, xt ); -exp = 1; -do - { - if( exp & nexp ) - emul( p, xt, xt, ldp ); - p -= NE; - exp = exp + exp; - } -while( exp <= MAXP ); - -emovi( xt, tt ); -if( esign < 0 ) - { - lexp -= tt[E]; - k = edivm( tt, yy, ldp ); - lexp += EXONE; - } -else - { - lexp += tt[E]; - k = emulm( tt, yy, ldp ); - lexp -= EXONE - 1; - } - -expdon: - -/* Round and convert directly to the destination type */ -if( oprec == 53 ) - lexp -= EXONE - 0x3ff; -else if( oprec == 24 ) - lexp -= EXONE - 0177; -#ifdef DEC -else if( oprec == 56 ) - lexp -= EXONE - 0201; -#endif -ldp->rndprc = oprec; -emdnorm( yy, k, 0, lexp, 64, ldp ); - -aexit: - -ldp->rndprc = rndsav; -yy[0] = nsign; -switch( oprec ) - { -#ifdef DEC - case 56: - todec( yy, y ); /* see etodec.c */ - break; -#endif -#if LDBL_MANT_DIG == 53 - case 53: - toe53( yy, y ); - break; -#elif LDBL_MANT_DIG == 24 - case 24: - toe24( yy, y ); - break; -#elif LDBL_MANT_DIG == 64 - case 64: - toe64( yy, y ); - break; -#elif LDBL_MANT_DIG == 113 - case 113: - toe113( yy, y ); - break; -#else - case NBITS: - emovo( yy, y, ldp ); - break; -#endif - } -lenldstr += s - lstr; -if (mflag) - free (lstr); -return lenldstr; -} - - - -/* y = largest integer not greater than x - * (truncated toward minus infinity) - * - * unsigned short x[NE], y[NE] - * LDPARMS *ldp - * - * efloor( x, y, ldp ); - */ -static unsigned short bmask[] = { -0xffff, -0xfffe, -0xfffc, -0xfff8, -0xfff0, -0xffe0, -0xffc0, -0xff80, -0xff00, -0xfe00, -0xfc00, -0xf800, -0xf000, -0xe000, -0xc000, -0x8000, -0x0000, -}; - -static void efloor(short unsigned int *x, short unsigned int *y, LDPARMS *ldp) -{ -register unsigned short *p; -int e, expon, i; -unsigned short f[NE]; - -emov( x, f ); /* leave in external format */ -expon = (int )f[NE-1]; -e = (expon & 0x7fff) - (EXONE - 1); -if( e <= 0 ) - { - eclear(y); - goto isitneg; - } -/* number of bits to clear out */ -e = NBITS - e; -emov( f, y ); -if( e <= 0 ) - return; - -p = &y[0]; -while( e >= 16 ) - { - *p++ = 0; - e -= 16; - } -/* clear the remaining bits */ -*p &= bmask[e]; -/* truncate negatives toward minus infinity */ -isitneg: - -if( (unsigned short )expon & (unsigned short )0x8000 ) - { - for( i=0; i<NE-1; i++ ) - { - if( f[i] != y[i] ) - { - esub( eone, y, y, ldp ); - break; - } - } - } -} - - - -static void eiremain(short unsigned int *den, short unsigned int *num, LDPARMS *ldp) -{ -long ld, ln; -unsigned short j; - unsigned short *equot = ldp->equot; - -ld = den[E]; -ld -= enormlz( den ); -ln = num[E]; -ln -= enormlz( num ); -ecleaz( equot ); -while( ln >= ld ) - { - if( ecmpm(den,num) <= 0 ) - { - esubm(den, num); - j = 1; - } - else - { - j = 0; - } - eshup1(equot); - equot[NI-1] |= j; - eshup1(num); - ln -= 1; - } -emdnorm( num, 0, 0, ln, 0, ldp ); -} - -/* NaN bit patterns - */ -#ifdef MIEEE -static unsigned short nan113[8] = { - 0x7fff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff}; -static unsigned short nan64[6] = {0x7fff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff}; -static unsigned short nan53[4] = {0x7fff, 0xffff, 0xffff, 0xffff}; -static unsigned short nan24[2] = {0x7fff, 0xffff}; -#else /* !MIEEE */ -static unsigned short nan113[8] = {0, 0, 0, 0, 0, 0, 0x8000, 0x7fff}; -static unsigned short nan64[6] = {0, 0, 0, 0, 0xc000, 0x7fff}; -static unsigned short nan53[4] = {0, 0, 0, 0x7ff8}; -static unsigned short nan24[2] = {0, 0x7fc0}; -#endif /* !MIEEE */ - - -static void enan (short unsigned int *nan, int size) -{ -int i, n; -unsigned short *p; - -switch( size ) - { -#ifndef DEC - case 113: - n = 8; - p = nan113; - break; - - case 64: - n = 6; - p = nan64; - break; - - case 53: - n = 4; - p = nan53; - break; - - case 24: - n = 2; - p = nan24; - break; - - case NBITS: - for( i=0; i<NE-2; i++ ) - *nan++ = 0; - *nan++ = 0xc000; - *nan++ = 0x7fff; - return; - - case NI*16: - *nan++ = 0; - *nan++ = 0x7fff; - *nan++ = 0; - *nan++ = 0xc000; - for( i=4; i<NI; i++ ) - *nan++ = 0; - return; -#endif - default: - mtherr( "enan", DOMAIN ); - return; - } -for (i=0; i < n; i++) - *nan++ = *p++; -} |