1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
|
CPPAWK-CONS(1) Cons Cells CPPAWK-CONS(1)
NAME
cons - Lisp-like data representation and control flow macros
SYNOPSIS
#include <cons.h>
// Basic control-flow macros
progn(...) // eval multiple expressions, yield last
prog(...) // eval multiple expressions, yield 1
and(...) // short circuit and; yields nil or last expr
or(...) // short-circuit or: yields first true expr
// Lisp-like data structuring
nil // empty list; Boolean false.
consp(x) // is x a cons cell?
atom(x) // is x an atom?
null(x) // is x the nil object?
endp(x) // true if x is cons, false if nil, else error
numberp(x) // true if x is a number
stringp(x) // true if x is a boxed string
symbolp(x) // true if x is a boxed string
box(av) // convert Awk number or string Lisp value.
unbox(lv) // convert Lisp value to Awk number or string.
box_str(av) // create Lisp boxed string from Awk value av
box_sym(av) // create Lisp symbol named av
cons(a, d) // create cons cell with car = a and cdr = d.
car(x) // retrieve car of cons cell x.
cdr(x) // retrieve cdr of cons cell x.
sexp(x) // convert Lisp value to S-expression string
equal(x, y) // test whether two Lisp values are equal
equalize(x) // convert object to canonical representation
list(...) // return argument values as a Lisp list
append(...) // append list arguments; last may be atom
li(...) // inline macro version of list
listar(...) // Lisp's list*, implemented as a macro
member(y, x) // first suffix of list x starting with y
position(y, x) // zero-based position of y in list x
nth(i, x) // zero-based i-th item from list x
nthcdr(i, x) // suffix of x starting at i-th item
ldiff(x, y) // prefix of x omitting suffix y.
last(x, [n]) // suffix of x of length n, defaulting to 1.
butlast(x, [n]) // prefix of x omitting last n, defaulting to 1.
reverse(x) // reverse list x
iota(x, y[, d]) // numbers from x to y, incrementing by
uniq(x) // deduplicate x
uniqual(x) // deduplicate x with equal equality
// Function application
mapcar(f, x) // map list through function f
mappend(f, x) // map list through f, append results
// Array/list conversion
values(a) // convert values of Awk array a to list
keys(a) // return list of keys of Awk array x
// Field/list conversion
fields() // convert Awk positional fields to list
set_fields(x) // set Awk positional fields from list x
// list iteration
dolist(item, list)
statement
dolisti(item, index, list)
statement
doconses(suffix, list)
statement
// stack-like list manipulation
push(y, x) // push item y onto x, updating location x
pop(x) // pop item from list x, updating x
// procedural list construction
bag = list_begin()
bag = list_add(bag, item)
list = list_end(bag)
// bags macro: collect into multiple bags that become lists
bags (b1, b2, ...) { bag(b1, value) ... }
OVERVIEW
Due to the data structuring limitations of the Awk language, the cppawk representation of
Lisp-like data structures is only a sham built on character strings. The term mock Lisp is
sometimes given to this kind of phony, but functional, imitation of Lisp. The term is due
to James Gosling, who in the early 1980's implemented a language actually called "Mock
Lisp" in support of a text editor. Mock Lisp treated character strings containing words
and parentheses as if they were nested lists.
cppawk's mock Lisp data structures do not internally use parentheses but are nevertheless
implemented using the string data type. Each mock Lisp value is an Awk character string.
The exact specification for how this works is given in the BOXED VS. UNBOXED section be-
low.
Rationale: why the character strings is used as the basis is that it is the only aggregate
data structure that Awk can pass into functions as an argument, and return out of func-
tions. The only two other aggregate structures in Awk are the associative array, and the
positional fields. The positional fields are a kind of global array that exists as a sin-
gle instance accessed by the $ operator together with a numeric argument. Even if this
somehow were useful to an implementor of Lisp data structures, the plan would be foiled by
the requirement that the Awk application has full control and use of the positional param-
eters. The associative array seems more useful, but though arrays can be passed into func-
tions, they cannot be returned. Moreover, arrays are never anonymous in Awk; they are al-
ways stored in a named variable.
Other Lisp data structuring imitations in Awk have been written, which typically use a
global array to simulate a Lisp heap, with reference semantics, garbage collection and
all. The goal of cppawk's cons library is not to create a Lisp interpreter within Awk (and
there isn't one), but to enhance Awk programming with Lisp-inspired List processing which
seamlessly integrates with existing Awk programming idioms.
Given what it is, and how it is implemented, the library provides Lisp-like list process-
ing of decent fidelity. It replicates the cons cell abstraction: it features lists made of
cons cells, terminated by a nil symbol.
BOXED VS. UNBOXED
The cons library flexibly handles two kinds of data: boxed values ("Lisp objects") and un-
boxed values ("Awk values").
Certain kinds of values only exist in the boxed representation. Awk has no native cons
data type, or symbol type; so these only exist as boxed representations.
Numbers exist only in the unboxed representation; nothing special is done with Awk numbers
to incorporate them into a Lisp structure such as a list; their character string image is
stored. Awk numbers already have a string nature, so packing them as strings into a larger
string is natural to Awk.
In the boxed representation, every object is a string whose first character is a type
code. The rest of the string has a meaning which depends on the type code.
There are currently four type codes:
T The type code letter T stands for "text": it denotes a character string. The char-
acters after the T specify the string data.
S The type code S denotes a symbol; the characters after the type code are the symbol
name.
C The type code letter C denotes a cons cell. This has a more complicated structure
than T or S. The C is immediately followed by a header consisting of four items: a
non-negative decimal integer, a comma, another non-negative decimal integer, and a
colon. More data may follow after the colon. The first integer gives the length,
in characters, of the cons cell's car object. The second integer gives the length,
in characters, of the cons cell's cdr object. Thus, it is clear, that a "cons cell"
in cppawk is not actually a heap-allocated node with pointers to other objects, but
a string which entirely contains the objects. The list (1 2 3), for instance, gets
represented by the character string C1,12:1C1,6:2C1,0:3. The string fully de-
scribes it; there is no part of the list stored elsewhere. Three C's appear in the
string, because the list has tree items and thus three cons cells. C:1,12 means
that the first car is one character long, and the rest of the list is 12 characters
long. That one-character-long car is the 1 that immediately follows the colon after
the length 12. The rest of the list, (2 3), is then the C1,6:2C1,0:3 part. Here,
again, there is a one-character-long car which is 2 and then the six-character rest
of the list C1,0:3. Here is where things get interesting. The car of the last cell
is 3. Curiously, the length of the cdr is zero, and nothing appears after the 3.
The reason for this is that the list is terminated by the nil object. The nil ob-
ject has zero length because in cppawk, nil is represented by the empty string.
U The U type code represents the boxed version of the Awk undefined value, such as
the value of an undefined variable. Application code which needs to reliably pre-
serve undefinedness of a value through Lisp operations should box and unbox it.
It should be obvious that because the cons cell representation uses a length + data encod-
ing, a cons cell can store any pair of Awk values, whether they are boxed or unboxed. For
instance,
cons("C3,5:d", 4)
works perfectly well; and if the car function is applied to the result, it will yield the
string "C3,5:d". Note that this string also looks like a corrupt cons cell: it has the C
type code followed by length fields, but the data portion is insufficiently long. This
will only be a problem if the application expects that the car of the cell is a boxed Lisp
object, and treats it as such: for instance by trying to perform some list operation on
it. It's up to the application to put a boxed value into a cons cell, if it expects to re-
trieve one.
TREATMENT OF BOOLEAN VALUES
In Lisp, how Boolean truth works it that the nil object is false, and every other object
is true. Recall that nil also serves as the empty list; so empty lists are "falsy", and
non empty lists "truthy".
In the cppawk mock Lisp system, this is adjusted to fit Awk semantics.
In Awk, three possible values are false:
1. The undefined value, such as the value of a variable that has never been assigned,
or a function parameter that was never passed,
2. The empty string.
3. The number zero.
The mock Lisp system adopts these same conventions in order to integrate with Awk. One of
these values is chosen as the symbol nil and that is the empty string. This is defined as
a macro:
#define nil ""
By empty string, we here mean the empty Awk string. The empty Lisp string is represented
as the one-character-long Awk string "T", which is not false.
Note that the boxed undefined value tests true, not false.
CONTROL FLOW PRIMITIVES
The control flow primitives are macros patterned after similar macros found in some Lisp
dialects.
Macros prog and progn
Syntax:
prog(expr1, expr2, ...)
progn(expr1, expr2, ...)
Description:
The prog and progn macros evaluate all their argument forms from left to right.
The prog macro evaluates one or more expressions expr1, expr2,
The progn macro evaluates one or more expressions expr1, expr2,
Example:
// simulate missing comma operator in Awk
for (prog(i = 0, j = 0);
i < N;
prog(i++, j += i))
{
}
// Write a macro swap() that can be used anywhere
// where an expression can be used, and returns the
// prior value of a.
#define swap(a, b, temp) (progn(temp = a, a = b, b = temp))
Macros and and or
Syntax:
and(expr1, expr2, ...)
or(expr1, expr2, ...)
Description:
The and and or macros evaluate their argument expressions from left to right.
The and macro stops evaluating when one of the expressions yields a false value, and
yields that value. If all expressions yield a true value, then and yields the value of the
last expression.
The or macro stops evaluating when one of the expressions yields a true value, and yields
that value. The remaining expressions are not evaluated. If or reaches the last expres-
sion, then it yields that expression's value.
Examples:
BEGIN { print or(0, "", nil, 3, 4) } # output is 3
BEGIN { print and(1, 2, 3, 4) } # output is 4
BEGIN { print and(0, 2, 3, 4) } # output is 0
BEGIN { print and(1, "", 3, 4) } # output same as print ""
DATA REPRESENTATION LIBRARY
In the following descriptions, the notations X => Y and X -> Y denote that the expression
X returns the value Y.
The => notation indicates that Y is being given as a native Awk value.
The -> notation indicates that Y is a boxed Lisp value being shown in Lisp syntax:
Examples:
cons(1, 2) -> (1 . 2)
cons(1, 2) => "C1,1:12"
The <--> notation indicates that two expressions produce an equivalent effect or value.
In examples, whenever a variable appears with one of the names undef, undef1 or undef2, it
is to be understood as a variable that was not assigned, and therefore evaluates to the
undefined value.
In this library, whenever the input to a function is a list, it is required to be a proper
list unless otherwise noted. A proper list is terminated by the specific atom nil rather
than some other atom. If a library function which requires proper lists detects an im-
proper list, execution will terminate with a diagnostic.
Other input conditions are diagnosed, such as a negative argument where a non-negative in-
teger is expected.
Macro nil
Syntax:
nil
Description:
The nil macro expands to the empty string "". it is the representation of the empty list,
and behaves as a Boolean false, along with zero.
Functions consp and atom
Syntax:
consp(x)
atom(x)
Description: The consp function returns 1 if x is a cons cell, otherwise 0.
The atom function is the negation of consp: it returns 0 is a cons, otherwise 1. Any ob-
ject that is not a cons is classified as an atom.
Functions null and endp
Syntax:
null(x)
endp(x)
Description: The null function returns 1 if, and only if, x is the nil object (which is
the empty string). Otherwise it returns 1.
The endp function returns 1 if x is the nil object. If x is a cons, then it returns zero.
If x is any other object (and thus, an atom other than nil) the function prints a diagnos-
tic and terminates.
The purpose of endp is to provide a termination test for code that iterates over lists,
with error checking that detects improper lists. Improper lists are lists that end in an
atom other than the empty list nil.
Functions numberp, stringp and symbolp
Syntax:
numberp(x)
stringp(x)
symbolp(x)
Description:
These functions test, respectively, whether the object x is a number, string or symbol,
returning 1 to indicate true, 0 to indicate false.
An object is a string if, and only if, it is a boxed string. See the box function. Thus,
stringp("abc") returns zero. Code not working with boxed objects shouldn't rely on this
function and instead use numberp to distinguish numbers from non-numbers.
Examples:
numberp(3) -> 1
numberp(0) -> 1
numberp("") -> 0
numberp("abc") -> 0
numberp(cons(1, 2)) -> 0
stringp("") -> 0 // "" is the object nil
stringp("abc") -> 0 // not a boxed string
stringp(box("abc")) -> 1
stringp("Tabc")) -> 1 // manually boxed "abc"
symbolp(nil) -> 1 // nil is a symbol
symbolp("") -> 1 // indistinguishable from nil
symbolp(3) -> 0 // numbers are not symbols
symbolp("abc") -> 0 // not a symbol
symbolp("Sabc") -> 1 // manually produced symbol abc
Functions box, unbox, box_str and box_sym
Syntax:
box(av)
unbox(lv)
box_str(av)
box_sym(av)
Description:
The box function creates a Lisp object from a native Awk value av. If av is numeric, then
box returns av. Note that a value like "1abc" is numeric in Awk and behaves like 1 under
arithmetic. If av is the Awk undefined value, such as the value of a variable that has
never been assigned, then box returns a boxed representation of the undefined value. Oth-
erwise box returns a boxed string representation of av.
The unbox function recovers the Awk value from the Lisp object lv. If lv is a number,
then unbox returns lv. If lv is a boxed string, then unbox returns the plain Awk string.
If lv is a symbol, then unbox returns its name.
For any other value, unbox prints a diagnostic message and terminates the process.
The box_str function boxes an Awk value as a string, regardless of whether or not it is
numeric.
The box_sym function boxes an Awk value av as a symbol. The string representation of av
becomes the symbol's name. The string "nil" boxes as the nil symbol, and not as B"Snil".
Examples:
box(0.707) => 0.707
box("") => "T"
box("abc") => "Tabc"
box(undef) => "U"
unbox(nil) => "nil" // name of symbol nil is "nil"
unbox(box("abc")) => "abc"
unbox(3.14) -> 3.14
unbox(symbol("abc")) => "abc"
unbox("xyz") => ;; error
unbox("Txyz") => "xyz" // T type code indicates boxed string
box_sym("") => "S" // symbol with empty string name
box_sym(3.14) => "S3.14" // the symbol 3.14 (not a number)
box_sym("abc") => "Sabc" // the symbol abc
box_sym("nil") => "" -> nil // "nil" is the symbol nil
Functions cons, car and cdr
Syntax:
cons(a, d)
car(c)
cdr(c)
Description
The cons function constructs and returns a binary pair object called a cons cell or just a
cons. The cons holds the two argument values in two fields called car and cdr.
The arguments may be any values: any combination of boxed or unboxed objects.
The car function returns the car field of its cons cell argument.
Likewise, the cdr function returns the cdr field of its cons cell argument.
The car and cdr functions may be given the nil symbol as an argument instead of a cons, in
which case they return nil.
Examples:
cons(1, 2) => "C1,1:12" -> (1 . 2)
car(cons(1, 2)) -> 1
cdr(cons(1, "abc")) => "abc"
// Without boxing, undefined gets treated as nil.
cons(undef1, undef2) => "C0,0:" -> (nil . nil)
car(cons(undef1, undef2)) => "" -> nil
// Boxing passes through and recovers Awk undefined value
cons(box(undef1), box(undef2)) => "C1,1:UU" -> (#U . #U)
car(cons(box(undef1), box(undef1))) => ;; Awk undefined value
Function sexp
Syntax:
sexp(x)
Description
The sexp function produces a printed representation of a Lisp object: an S-expression.
This form reveals the structure in a readable format. It is returned as a string.
String objects, boxed or unboxed, are rendered with double quotes. Any double quotes or
backslash character appearing in the string is preceded with a backslash.
Symbols are rendered without surrounding quotes, but with the same escaping scheme. The
nil symbol appears as nil.
A boxed undefined value appears as #U.
Cons cells are printed in a parenthesized notation, according to these rules:
1. A cons cell whose cdr is an atom other than nil is printed in the dotted pair nota-
tion as (a . b) where a and d are the recursively calculated S-expressions of the
car and cdr fields. The dot between the a and b is called the consing dot.
2. A cons cell cdr is the atom nil is printed more compactly as (a) where a is the re-
cursively calculated S-expression of the car field.
3. Whenever a cons cell appears as the cdr child of another cons cell, the parentheses
of the child are removed, as is the consing dot before it, merging it with the par-
ent. This rule is applied to the maximum extent possible. Visually, this means that
where the S-expression (a . (b ...)) would be produced, the dot and inner paren-
theses disappear, resulting instead in (a b ...).
Rules 2 and 3 result in an understandable notation for lists. For instance, if full use
of the dotted pair notation is made, the list of three numbers 1, 2, 3 appears like this:
(1 . (2 . (3 . nil))). Rule 2 reduces it slightly to (1 . (2 . (3))). A single ap-
plication of rule 3 produces (1 . (2 3)), and one more application of the rule results in
(1 2 3). All these representations are equivalent, denoting exactly the same data struc-
ture. The sexp function favors the last of these.
Examples:
BEGIN {
print sexp("abc")
print sexp(cons(1, cons(2, 3)))
print sexp(cons("a", cons(2, box(undef))))
print cons(nil, 1)
}
"abc"
(1 2 . 3)
("a" 2 . #U)
(nil . 1)
Functions equal and equalize
Syntax:
equal(x, y)
equalize(x)
Description
The equal function compares two objects x and y, returning 1 to indicate that they are the
same, otherwise 0. This function's notion of sameness is different from that of the == op-
erator.
If x and y are equal under the == operator, equal returns 1; equal never contradicts a
positive result from the Awk equality operator.
However, some values found to be different by the == operator are nevertheless same ac-
cording to equal, in the following ways.
1. If x and y are both numbers, then they are compared numerically, While this may
seem to be the same as Awk equality, that is not the case. This rule is applied
regardless of the origin of x and y. Concretely:
("1" == "1.0") => 0
but:
equal("1", "1.0") => 1
There are situations in which Awk == appears to have the behavior of equal on two
inputs, for instance:
awk '{ print $1 == $2 }'
will print 1 when a record with the fields 1 and 1.0 is processed. This is because
Awk classifies certain inputs, such as fields delimited during input scanning, as
being numeric strings if they look like numbers. This numeric string status is at-
tached to their type information, and two numeric strings are compared as numbers.
Yet, strings character-for-character identical to these which are produced via
string manipulation are not treated as numeric. Loosely speaking, the equal func-
tion compares two (unboxed) strings as numbers if they would be numeric strings if
they were input as Awk fields.
2. A boxed string is equal to an unboxed string of the same content, but only if the
unboxed string isn't numeric. A numeric unboxed string is considered a number, and
thus not equal to any boxed string.
equal("Tabc", "abc") => 1
equal("T123", "123") => 0
3. If x and y are both cons cells, then equal considers them to be the same if, recur-
sively, car(x) is equal to car(y) and cdr(x) is equal to cdr(y)
The equalize function is semantically related to equal. It computes and returns an object
similar to its argument object. If two objects x and y are considered to be the same by
the equal function, then the expressions equalize(x) and equalize(y) each return the same
string.
That is to say, the following relationship holds between equalize and equal:
equal(x, y) == (equalize(x) == equalize(y))
Comparing two objects for equality using equal is the same as converting them to a canoni-
cal representation with equalize and then comparing that representation using the == oper-
ator.
The function is useful for two reasons. Firstly, comparing objects with == is much cheaper
than equal; therefore, an application which performs a lot of comparisons may be made more
efficient if it equalizes the objects and then uses the == operator instead of equal.
Secondly, when equalized objects are used as keys for an Awk associative array, then, ef-
fectively, that array becomes based on equal equality. That is to say, for instance, if
the the objects cons("1.0", "2.0") and cons(1, 2) are used directly as associative array
keys, they are different keys because their string representation is different. Yet, those
two objects are equal. Suppose that in some application there exists the requirement that
equal objects must be be considered to be the same array key. This requirement can be sat-
isfied by passing all keys through the equalize function, and using the equalized images
of the keys for the array operations.
Function list
Syntax:
list(...)
Description
The list function takes a variable number of arguments, from zero to 32. It returns a
list of the values.
If no arguments are given to list, it returns nil.
If a single argument x is given, then list returns cons(x, nil).
nil is returned.
If two arguments x and y are given, list returns cons(x, cons(y, nil)).
This pattern generalizes to more arguments.
Function append
Syntax:
append(...)
Description
The list function takes a variable number of arguments, from zero to 32. If arguments are
present, the last one may be an atom or list. The other arguments must be lists.
If the arguments to the append function are lists, it returns a single list which is the
result of appending those lists together.
The append function has additional semantics involving non-list objects, allowing it work
with improper lists. The detailed specification follows.
If append is invoked with no arguments, it returns the empty list nil.
If append is invoked with exactly one argument, then it returns that argument, regardless
of that argument's type.
If append is invoked with two or more arguments, then all the arguments except for the
last must be lists. These lists are catenated together into a single list. The last argu-
ment becomes the terminator of the list.
Therefore if the last argument is a list, it becomes appended to the list as a suffix. If
the last argument is an atom, it becomes the terminating atom of the list produced from
the previous arguments.
append may be understood in terms of equivalent applications of the cons function:
append(X) <--> X
append(list(1), X) <--> cons(1, X)
append(list(1, 2), X) <--> cons(1, cons(2, X))
append(list(1, 2), <--> cons(1, cons(2, cons(3, cons(4, X))))
list(3, 4),
X)
From these equivalences, it is clear that the last argument X, whatever its type or value,
serves as the tail, onto which the items from the list arguments are prepended using the
cons operation, proceeding from right to left.
Examples:
append(nil) -> nil
append(3) -> 3
append("abc") -> "abc"
append(3, 4) -> // error!
append(list(1, 2, 3), list(4, 5)) -> (1 2 3 4 5)
append(list(1, 2, 3), list(4, 5), cons(6, 7)) -> (1 2 3 4 5 6 . 7)
Macros li and listar
Syntax:
li(...) // inline macro version of list
listar(...) // Lisp's list*, implemented as a macro
Description
The li and listar macros must be invoked with one or more arguments up to 32. The li
macro produces the same result as list with the same arguments. Unlike list, li expands to
code consisting of nested invocations of the cons function. For instance li(1) generates
the code cons(1, nil) and li(1, 2) generates cons(1, cons(2, nil)). Therefore, li elimi-
nates the overhead of the list function's need to process variable argument lists.
The listar macro is a variant of li inspired by the Lisp list* function, which is a gener-
alization of cons. When li is called with one argument, it produces that argument. Thus
listar(1) expands to 1. The two-argument case of listar is equivalent to cons: listar(1,
2) expands to cons(1, 2). This generalizes to more arguments: listar(1, 2, 3) expands to
cons(1, cons(2, 3)) and so forth.
Examples:
li(1) -> (1)
li(1, 2) -> (1 2)
li(1, 2, 3) -> (1 2 3)
listar(1) -> 1
listar(1, 2) -> (1 . 2)
listar(1, 2, 3) -> (1 2 . 3)
listar(1, 2, 3, list(4, 5, 6)) -> (1 2 3 4 5 6)
Function member
Syntax:
member(y, x)
Description
The member function returns the longest suffix of list x whose first element is equal to
y.
If x does not contain an item equal to y, then member returns nil.
Examples:
member(2, list(1, 2, 3)) -> (2 3)
member("a", list("a", "b", "c")) -> ("a" "b" "c")
member("a", list("c", "d")) -> nil
Function position
Syntax:
position(y, x)
Description
The position function searches list x for the leftmost element which is equal to y. If
such an element is found, its zero-based position from the start of the list is returned.
if it is the first element, then zero is returned; if it is second, then one, and so on.
If y is not found, then position returns nil.
Examples:
position(1, list(1, 2, 3)) -> 0
position(3, list(1, 2, 3)) -> 2
position(4, list(1, 2, 3)) -> nil
Functions nth and nthcdr
Syntax:
nth(i, x)
nthcdr(i, x)
Description
The nth and nthcdr functions perform zero-based indexing on lists.
nth retrieves the i-th item of the list x. If i is zero, it finds the first item; if i is
one, the second item and so forth. If there is no such item, nth returns nil.
nthcdr produces the suffix of the list x starting at the i-th item, using the same number-
ing.
Thus, there is a relationship between the two functions:
nth(i, x) <--> car(nthcdr(i, x))
Examples:
nth(1, list(1, 2, 3)) -> 2
nth(15, list(1, 2, 3)) -> nil
nthcdr(0, list(1, 2, 3)) -> (1 2 3)
nthcdr(2, list(1, 2, 3)) -> (3)
cons cell of the list. The nth function finds the car of that cons cell.
If i is a negative integer, then nth returns nil and nthcdr returns x.
Functions ldiff, last and butlast
Syntax:
ldiff(x, y)
last(x, [n])
butlast(x, [n])
Description
The ldiff function calculates the prefix of the list x which excludes the suffix y. If y
isn't a suffix of x, then ldiff returns x.
If y is an atom, then it is a suffix of x if x is terminated by the same atom. In that
case, what is returned is a proper list of the elements of x: that is, one terminated by
nil. Effectively, the y atom suffix is "removed" by way of being replaced by nil.
If y is a list, then to be a suffix of x it must match a tail portion of x exactly. The
terminating atom of y must be the same as that of x and all the elements must match ex-
actly. The return value is a list of all the elements of x which precede that portion of
x which matches the y suffix.
ldiff uses the == operator for determining sameness of suffixes and terminating atoms.
The last function returns an n-element-long suffix of list x, where n must be a nonnega-
tive integer. If omitted, n defaults to 1.
The suffix of x returned by last always includes the original terminating atom taken from
x.
If n is zero, then the return value of last is that terminating atom itself.
Note: in the algebra of Lisp lists, an atom may be regarded as a list of length zero ter-
minated by that atom. For instance, if the cons cell (1 . 42) is an improper list of
length 1 terminated by 42, then 42 is the rest of that list, which for some purposes may
be regarded as a list of length zero terminated by 42. Thus the zero-length suffix of (1
. 42) is 42, and this is what last(cons(1, 42), 0) calculates.
If n equals or exceeds the length of x, then last returns x.
The butlast function is complementary to last: it returns that portion of x that is not
returned by last: the prefix of x omitting the last n elements. The meaning of the n pa-
rameter is the same, and it defaults to the same value of 1.
If n equals or exceeds the length of x, then butlast returns nil.
For any given list x and nonnegative n, the expression append(butlast(x, n), last(x, n))
returns a list similar to x.
Examples:
ldiff(list(1, 2, 3, 4), list(3, 4)) -> (1 2)
ldiff(list(1, 2, 3, 4), list(1, 2, 3, 4)) -> nil
ldiff(list(1, 2, 3, 4), list(4)) -> (1 2 3)
ldiff(list(1, 2, 3, 4), list(5, 6)) -> (1 2 3 4)
ldiff(list(1, 2, 3, 4), "abc") -> (1 2 3 4)
ldiff(cons(1, cons(2, 3)), 3) -> (1 2)
last(list(1, 2, 3)) -> (3)
last(list(1, 2, 3), 2) -> (2 3)
last(cons(1, cons(2, 3)), 0) -> 3
butlast(list(1, 2, 3), 2) -> (1)
butlast(list(1, 2, 3), 15) -> nil
Function reverse
Syntax:
reverse(x)
Description
The reverse function returns the reverse of list x: a list containing the same items as x
but in the opposite order.
Function iota
Syntax:
Description
iota(x, y[, d])
The iota function produces a list of numbers starting from x and ending in y.
The optional d argument (delta) specifies the increment step size between consecutive
numbers. It defaults to one, if y is greater than x, negative one otherwise.
When the value of y is surpassed, the production stops. If the value of y occurs, it is
included in the list. The value y being surpassed means that the next value of the
sequence lies on the other side of y compared to the previous value of the sequence. That
next value is excluded from the sequence, and the sequence terminates.
If x is greater than y, then a descending sequence is generated, if the value of d is
negative.
In all other situations, the following requirements apply:
If x == y, then iota returns list(x) regardless of the value of d.
Furthermore, iota function returns the empty list nil in the following situations:
The iota function unconditionally returns the empty list nil in the following situations:
1. d == 0.
2. x <= y && d < 0.
3. x > y && d > 0.
To ensure maximum accuracy when fractional range limits and/or delta are used, the
successive values of the sequence are calculated by by a multiplication-and-displacement
calculation relative to an internal counter which increments in steps of 1 starting from
0, not by repeatedly accumulating the value of d .
That is to say, for example, iota(2.5, 10, 0.3) collects the initial value of 2.5 into the
output list, and then subsequent values are produced by the calculation i * 0.3 + 2.5 for
values of the internal variable i being 1, 2, ... and not by initializing an accumulator
to 1, and then repeatedly adding 0.3 to that accumulator.
The test for whether the value of y occurs in the sequence (and is therefore included)
uses the == operator and therefore absolute floating-point precision. Depending on the
choices of x and d, a value that is very close to y may be attained, which is not
recognized as equal. If all three values x, y and d have exact representations in the
floating-point system, and the difference between x and y is a multiple of d then y will
be attained.
Examples:
iota(1, 1) -> (1)
iota(1, 3) -> (1 2 3)
iota(1, -1) -> (1 0 -1)
iota(1, 3, 0.25) -> (1 1.25 1.5 1.75 2 2.25 2.5 2.75 3)
iota(3, 1, -0.25) -> (3 2.75 2.5 2.25 2 1.75 1.5 1.25 1)
iota(1, 3, -1) -> nil
iota(2.5, 2.5, 0) -> (2.5)
iota(2.5, 2.5, -1) -> (2.5)
Functions uniq and uniqual
Syntax:
uniq(x)
uniqual(x)
Description
The uniq and uniqual functions return a list formed by removing the duplicates from list
x.
Whenever any item appears in x more than once, the resulting list will have only the first
occurrence of that item; the subsequent occurrences do not appear in the returned list.
The uniq function identifies duplicates using native Awk equality, using the raw
representation of the objects as keys into an associative array.
The uniqual function uses the equal function's notion of equality.
Examples:
uniq(nil) -> nil
uniq(list(1, 2, 1, 3, 2, 4, 2, 1, 5, 6, 5)) -> (1 2 3 4 5 6)
uniqual(nil) -> nil
uniqual(list(1, 2, 1, 3, 2, 4, 2, 1, 5, 6, 5)) -> (1 2 3 4 5 6):
uniq(list(1, 1.0)) -> (1)
uniq(list(1, "1.0")) -> (1 1.0)
uniqual(list(1, 1.0)) -> (1)
uniqual(list(1, "1.0")) -> (1)
uniq(list(box_str("abc"), "abc")) -> ("abc" "abc")
uniqual(list(box_str("abc"), "abc")) -> ("abc")
FUNCTION APPLICATION
Functions mapcar and mappend
Syntax:
mapcar(f, x)
mappend(f, x)
Description
Note: this function requires GNU Awk, or any dialect which supports GNU-Awk-style indirect
functions.
The mapcar and mappend functions call function f once for every element of list x in left
to right order, and produce a new list based on the values returned by f.
The mapcar function returns a list of the values returned by f which appear in the same
order as the calls to f.
The mappend function requires all values returned by f, except for possibly the last one,
to be a list. Mappend catenates these lists together, as if using the append function, in
the same order as the calls to f.
Note: the function value f may be produced by applying the fun or bind operator to an Awk
function. These operators are located in the <fun.h> library.
Note: function indirection does not work correctly on built-in functions on GNU Awk before
version 5.2.
Examples:
#include <cons.h>
#include <fun.h>
function sq (x) {
return sqrt(x)
}
BEGIN {
// prints (("x" . 1) ("x" . 2) ("x" . 3))
print sexp(mapcar(bind(cons, "x"), list(1, 2, 3)))
// prints ("x" 1 "x" 2 "x" 3)
print sexp(mappend(bind(list, "x"), list(1, 2, 3)))
// prints (0 1 2 3 4 5)
print sexp(mapcar(fun(sq), list(0, 1, 4, 9, 16, 25)))
}
ARRAY/LIST CONVERSION
Functions values and keys
Syntax:
values(a)
keys(a)
Description
The values function returns a list of all the values currently stored in the the
associative array a.
The values function returns a list of all the indices of associative array a.
Associative arrays are not ordered; therefore the lists returned by keys and values are
not in any required order.
However, if the keys and values are applied to the same array object a without any
intervening changes to a, then the contents of the two lists correspond to each other by
position: the n-th value in the value list corresponds to the n-th key in the key list.
The keys or values aren't subject to any conversion; they may be boxed or unboxed objects.
Examples:
// assuming a is prepared like this:
split("a:b:c", a, /:/)
values(a) -> ("c" "a" "b")
keys(a) -> (3 1 2)
FIELD/LIST CONVERSION
Functions fields and set_fields
Syntax:
fields()
set_fields(x)
Description
The fields function returns a list of the current values of the Awk positional fields from
$1 to $NF.
The set_fields function replaces the positional values with the contents of list x setting
NF to the length of the list.
Since the fields and NF are modified, Awk updates the value of $0 also in its documented
manner.
The values are not subject to any conversion in either direction. If x contains boxed
values, then those boxed values become fields.
Examples:
// set fields, assuming default FS
$0 = "the quick brown fox"
fields() -> ("the" "quick" "brown" "fox")
set_fields(list(1, cons(1, 2), "foo", box_str("foo")))
// this loop now prints:
// ("the" "quick" "brown" "fox")
// 1
// C1,1:12
// foo
// Tfoo
for (i = 1; i <= NF; i++)
print $i
LIST ITERATION
Macros dolist, dolisti and doconses
Syntax:
dolist(item, list)
statement
dolisti(item, index, list)
statement
doconses(suffix, list)
statement
Description
The dolist, dolisti and doconses macros provide an iteration construct for traversing
lists.
The dolist and dolisti macros require list to be an expression evaluating to a list. If
the iteration is permitted to traverse the entire list (no early break out of the loop
takes place), then list must be a proper list. The item and index arguments must be
identifiers suitable for use as a variable name. The macro invocations must be
immediately followed by a statement, which must be syntactically a statement.
The dolisti macro evaluates the list expression and initializes an internal iterator. It
then enters into a loop which visits every element of the list, and for each element,
executes the statement. On each iteration, the item variable is set to the next available
element of the list, and index is set to a successive integer, starting from 0. Thus each
item value is accompanied by an index value indicating that value's zero-based position in
the list.
The dolist macro is similar, except it takes no index argument, and consequently does not
provide the index values.
The item and index variables are assigned. If such variables are already visible, those
variables are used. Moreover, after these loops execute, the variables remain visible,
with their most recent values. If it is desirable for these variables to be local, the
program must arrange that in the surrounding code.
The doconses macro allows improper lists. It iterates the list over a statement exactly
like dolist and dolisti. The suffix argument must be an identifier suitable for use as a
variable name, The doconses provides access to the conses of the list rather than the
items. On the first iteration, the suffix variable is first set to the entire list. On
the second iteration, it is set to the rest of the list. Then to the rest of that and so
forth. For instance if the input list is (1 2 3 . 4) then suffix is stepped over the
values (1 2 3 . 4), (2 3 . 4) and finally the last cons cell (3 . 4).
STACK-LIKE LIST MANIPULATION
Macros push and pop
Syntax:
push(y, x)
pop(x)
Description
The push and pop macro take an argument x which must be an assignable location, such as a
variable, or associative array indexing expression.
The push macro pushes the value y onto the list currently stored in x. What this means is
that the value of x is overwritten with a new list which is the result of adding the y
item to the front of the old list. The push macro also produces that new list as its
value.
The pop macro removes the first element of the list stored in x and returns it. What this
means that x is overwritten with a new list, which is the result of removing the first
item from the old list.
If x contains the empty list nil, then it doesn't change, and pop returns nil.
If x contains an atom other than nil, an error diagnostic is issued and the program
terminates.
The expression push(y, x) is very similar to x = cons(y, x) and may likewise evaluate x
two times.
The sequence y = pop(x) has the same effect as y = car(x); x = cdr(x).
Example:
// list reversal using push and pop
function rev(li,
rev)
{
rev = nil
while (!endp(li))
push(pop(li), stack)
return rev
}
PROCEDURAL LIST CONSTRUCTION
Macros list_begin, list_add, list_end and list_end_atom
Syntax:
bag = list_begin()
bag = list_add(bag, item)
list = list_end(bag)
list = list_end_atom(bag, atom)
Description
These macros are used for building lists procedurally, by adding items from left to right.
list_begin
This macro takes no arguments and returns a bag object. This object is not itself a
list. Rather, a list is produced from a bag object using the list_end macro or the
list_end_atom macro.
list_add
Evaluates the bag and item expressions. Then returns a new bag which contains all
the same items as bag in the same order, plus item as the new rightmost element.
The bag object isn't modified.
list_end
Converts bag into a list of items, which is returned. The bag object is unmodified.
list_end_atom
Converts bag into a list of items, which is returned. The bag object is unmodified.
The list of items is terminated by the value of the atom expression. In spite of
the naming, this need not be the atom. Simply, the last cons cell of the returned
list has atom in its cdr field. If bag is empty, then atom is returned.
Examples:
bag = list_begin()
list_end(bag) -> nil
list_end_atom(bag, 3) -> 3
bag = list_add(bag, "a")
bag = list_add(bag, 1)
bag = list_add(bag, 2)
list_end(bag) -> ("a" 1 2)
list_end_atom(bag, 3) -> ("a" 1 2 . 3)
Macro bags
Syntax:
bags (b1, b2, ...) statement
bag (bag, item)
The bags macro initializes one or more variables to empty bag values. Then it executes a
statement. After the statement, the bag variables are converted to lists.
Within the statement, the bag helper macro is used for collecting items into the bags.
The expression bag(b, item) is a shorthand for b = list_add(b, item).
Example:
bags (vals, squares, sums) {
acc = 0
for (i = 0; i < 5; i++) {
bag (vals, i)
bag (squares, i*i)
bag (sums, acc += i)
}
}
// the bags variables are now
vals -> (0 1 2 3 4)
squares -> (0 1 4 9 16)
sums -> (0 1 3 6 10)
SEE ALSO
cppawk(1), cppawk-fun(1)
BUGS
AUTHOR
Kaz Kylheku <kaz@kylheku.com>
COPYRIGHT
Copyright 2022, BSD2 License.
cppawk Libraries 19 April 2022 CPPAWK-CONS(1)
|