TXR(1)

TXR Programming Language TXR(1)

1 NAME

TXR — Programming Language (Version 266)

2 SYNOPSIS

txr [options 1 [script—-file [arguments ...]]

3 DESCRIPTION

TXR is a general-purpose, multi-paradigm programming language. It comprises two languages integrated
into a single tool: a text scanning and extraction language referred to as the TXR Pattern Language (some-
times just "TXR"), and a general-purpose dialect of Lisp called TXR Lisp.

TXR can be used for everything from "one liner" data transformation tasks at the command line, to data
scanning and extracting scripts, to full application development in a wide range of areas.

A script written in the TXR Pattern Language, also referred to in this document as a query, specifies a pat-
tern which matches one or more sources of inputs, such as text files. Patterns can consist of large chunks of
multiline free-form text, which is matched literally against material in the input sources. Free variables
occurring in the pattern (denoted by the @ symbol) are bound to the pieces of text occurring in the corre-
sponding positions. Patterns can be arbitrarily complex, and can be broken down into named pattern func-
tions, which may be mutually recursive.

In addition to embedded variables which implicitly match text, the TXR pattern language supports a num-
ber of directives, for matching text using regular expressions, for continuing a match in another file, for
searching through a file for the place where an entire subquery matches, for collecting lists, and for combin-
ing subqueries using logical conjunction, disjunction and negation, and numerous others.

Patterns can contain actions which transform data and generate output. These actions can be embedded
anywhere within the pattern-matching logic. A common structure for small TXR scripts is to perform a
complete matching session at the top of the script, and then deal with processing and reporting at the bot-
tom.

The TXR Lisp language can be used from within TXR scripts as an embedded language, or completely
standalone. It supports functional, imperative and object-oriented programming, and provides numerous
data types such as symbols, strings, vectors, hash tables with weak reference support, lazy lists, and arbi-
trary-precision ("bignum") integers. It has an expressive foreign function interface (FFI) for calling into
libraries and other software components that support C-language-style calls.

TXR Lisp source files as well as individual functions can be optionally compiled for execution on a virtual
machine that is built into TXR. Compiled files execute and load faster, and resist reverse-engineering.
Standalone application delivery is possible.

TXR is free software offered under the two-clause BSD license which places almost no restrictions on
redistribution, and allows every conceivable use, of the whole software or any constituent part, royalty-free,
free of charge, and free of any restrictions.

4 ARGUMENTS AND OPTIONS

If TXR is given no arguments, it will enter into an interactive mode. See the INTERACTIVE LISTENER
section for a description of this mode. When TXR enters interactive mode this way, it prints a one-line
banner announcing the program name and version, and one line of help text instructing the user how to exit.

Unless the —c or —f options are present, the first non-option argument is treated as a script-file

Utility Commands 2021-07-12 1

TXR(1) TXR Programming Language TXR(1)

which is executed. This is described after the following descriptions of all of the options. Any additional
arguments have no fixed meaning; they are available to the TXR query or TXR Lisp application for speci-
fying input files to be processed, or other meanings under the control of the application.

Options which don’t take an argument may be combined together. The —v and —qg options are mutually
exclusive. Of these two, the one which occurs in the rightmost position in the argument list dominates. The
—c and - £ options are also mutually exclusive; if both are specified, it is a fatal error.

-Dvar=value

Bind the variable var to the value value prior to processing the query. The name is in scope
over the entire query, so that all occurrences of the variable are substituted and match the equiva-
lent text. If the value contains commas, these are interpreted as separators, which give rise to a list
value. For instance —Da, b, c creates a list of the strings "a", "b" and "c". (See the @ (col-
lect) directive.) List variables provide a multiple match. That is to say, if a list variable occurs
in a query, a successful match occurs if any of its values matches the text. If more than one value
matches the text, the first one is taken.

-Dvar Binds the variable var to an empty string value prior to processing the query.

-q Quiet operation during matching. Certain error messages are not reported on the standard error
device (but if the situations occur, they still fail the query). This option does not suppress error
generation during the parsing of the query, only during its execution.

-i If this option is present, then TXR will enter into an interactive interpretation mode after process-
ing all options, and the input query if one is present. See the INTERACTIVE LISTENER section
for a description of this mode.

-d
—-—debugger
Invoke the interactive TXR debugger. See the DEBUGGER section. Implies ——backtrace.
——backtrace
Turns on the establishment of backtrace frames for function calls so that a backtrace can be pro-
duced when an unhandled exception occurs, and in other situations. Backtraces are helpful in iden-
tifying the causes of errors, but require extra stack space and slow down execution.
-n
—-noninteractive

This option affects behavior related to TXR’s *stdin* stream. It also has a another, unrelated
effect, on the behavior of the interactive listener; see below.

Normally, if this stream is connected to a terminal device, it is automatically marked as having the
real-time property when TXR starts up (see the functions stream-set-prop and real-
time-stream-p). The —n option suppresses this behavior; the *stdin* stream remains ordi-
nary.

The TXR pattern language reads standard input via a lazy list, created by applying the lazy-
stream-cons function to the *stdin* stream. If that stream is marked real-time, then the lazy
list which is returned by that function has behaviors that are better suited for scanning interactive
input. A more detailed explanation is given under the description of this function.

Utility Commands 2021-07-12 2

TXR(1)

-1

TXR Programming Language TXR(1)

If the —n option is effect and TXR enters into the interactive listener, the listener operates in plain
mode. The listener reads buffered lines from the operating system without any character-based
editing features or history navigation. In plain mode, no prompts appear and no terminal control
escape sequences are generated. The only output is the results of evaluation, related diagnostic
messages, and any output generated by the evaluated expressions themselves.

Verbose operation. Detailed logging is enabled.

This option binds a Lisp global lexical variable (as if by the defparml function) to an object
described by Lisp syntax. It requires an argument of the form sym=value where sym must be,
syntactically, a token denoting a bindable symbol, and value is arbitrary TXR Lisp syntax. The
sym syntax is converted to the symbol it denotes, which is bound as a global lexical variable, if it
is not already a variable. The value syntax is parsed to the Lisp object it denotes. This object is
not subject to evaluation; the object itself is stored into the variable binding denoted by sym. Note
that if sym already exists as a global variable, then it is simply overwritten. If sym is marked spe-
cial, then it stays special.

If the query is successful, print the variable bindings as a sequence of assignments in shell syntax
that can be eval-ed by a POSIX shell. II the query fails, print the word "false". Evaluation of this
word by the shell has the effect of producing an unsuccessful termination status from the shell’s
eval command.

——lisp-bindings

This option implies —B. Print the variable bindings in Lisp syntax instead of shell syntax.

—a num

This option implies —B. The decimal integer argument num specifies the maximum number of
array dimensions to use for list-valued variable bindings. The default is 1. Additional dimensions
are expressed using numeric suffixes in the generated variable names. For instance, consider the
three-dimensional list arising out of a triply nested collect: ((("a"™ "b") ("c" "d"))
(("e™ "£") ("g" "h"))). Suppose this is bound to a variable V. With —a 1, this will
be reported as:

V_0_0[0]="a"
V_0_1[01="b"
V_1_0[0]="c"
V_1_1[0]="d"
V_0_O0[1l]="e"
V_0_1[1]="£"
V_1_0[1]="g"
V_1 1[1]="h"

With —a 2, it comes out as:

V_O0[0][O]="a"
V_1[0][0]="b"
V_O0[O][1l]="c"
V_1[0][1l]="d"
V_0[1][0]="e"
V_1[1][0]="£"
v_0[1][1]="g"

Utility Commands 2021-07-12 3

TXR(1)

TXR Programming Language TXR(1)

V_1[1][1]="h"

The leftmost bracketed index is the most major index. That is to say, the dimension order is:
NAME_m m+l1_..._n[1][2]...[m-1].

-c query

Specifies the query in the form of a command-line argument. If this option is used, the script—
file argument is omitted. The first non-option argument, if there is one, now specifies the first
input source rather than a query. Unlike queries read from a file, (nonempty) queries specified as
arguments using -c do not have to properly end in a newline. Internally, TXR adds the missing
newline before parsing the query. Thus —c "@a" is a valid query which matches a line.

Example:

Shell script which uses TXR to read two lines "1" and "2" from standard input, binding them to
variables a and b. Standard input is specified as — and the data comes from shell "here document"
redirection:

code: #!/bin/sh

txr -B -c "Qa
@b" - <<!
1

2
!

output: a=1
b=2

The @; comment syntax can be used for better formatting:
txr -B -c "@;

Qa
@b"

—-f script-file

Provides a way to specify the file from which the query is to be read, as an alternative to using the
main script-file argument. This is useful in #! ("hash bang") scripts. (See Hash-Bang Sup-
port below.) Use of this option does not affect the order of processing. All of the options are pro-
cessed first, before the script—fileisread, as if it were specified by the main script-file
argument. If the argument to —f is — (dash) then the script will be read from standard input
instead of a file. If this option is used, the first non-option argument, if there is one, no longer
specifies the script—file. Itis an argument to the script, such as the name of an input source.

-e expression

Evaluates a TXR Lisp expression for its side effects, without printing its value. Can be specified
more than once. The script—file argument becomes optional if at least one —e, —p, -P or -t
option is processed. If the evaluation of every expression evaluated this way terminates nor-
mally, and there is no script—file argument, then TXR terminates with a successful status.

-p expression

Just like —e but prints the value of expression using the prinl function.

Utility Commands 2021-07-12 4

TXR(1)

TXR Programming Language TXR(1)

-P expression

Like —p but prints using the pprinl function.

-t expression

Like —p but prints using the tprint function.

—-C number

——compat=number

Requests TXR to behave in a manner that is compatible with the specified version of TXR. This
makes a difference in situations when a release of TXR breaks backward compatibility. If some
version N+1 deliberately introduces a change which is backward incompatible, then —~C N can be
used to request the old behavior.

The requested value of N can be too low, in which case TXR will complain and exit with an
unsuccessful termination status. This indicates that TXR refuses to be compatible with such an old
version. Users requiring the behavior of that version will have to install an older version of TXR
which supports that behavior, or even that exact version.

If the option is specified more than once, the behavior is not specified.

Compatibility can also be requested via the TXR_COMPAT environment variable instead of the —C
option.

For more information, see the COMPATIBILITY section.

—-—gc—delta=number

The number argument to this option must be a decimal integer. It represents a megabyte value,
the "GC delta": one megabyte is 1048576 bytes. The "GC delta" controls an aspect of the garbage
collector behavior. See the gc—set-delta function for a description.

——debug-autoload

This option turns on debugging, like ——debugger but also requests stepping into the autoload
processing of TXR Lisp library code. Normally, debugging through the evaluations triggered by
autoloading is suppressed. Implies ——backtrace.

——debug-expansion

This option turns on debugging, like ——debugger but also requests stepping into the parse-time
macro-expansion of TXR Lisp code embedded in TXR queries. Normally, this is suppressed.
Implies ——backtrace.

Prints usage summary on standard output, and terminates successfully.

——license

Prints the software license. This depends on the software being installed such that the LICENSE
file is in the data directory. Use of TXR implies agreement with the liability disclaimer in the
license.

—-—version

Prints a message on standard output which includes the program version, and then immediately
causes TXR to terminate with a successful status.

Utility Commands 2021-07-12 5

TXR(1) TXR Programming Language TXR(1)

—-build-id
If TXR was built with an embedded build ID string, this option prints that string. Otherwise noth-
ing is printed. In either case, TXR then immediately terminates with a successful status.

-—args
The ——args option provides a way to encode multiple arguments as a single argument, which is
useful on some systems which have limitations in their implementation of the hash-bang mecha-
nism. For details about its special syntax, see Hash-Bang Support below. It is also useful in stand-
alone application deployment. See the section STANDALONE APPLICATION SUPPORT, in
which example uses of ——args are shown.

—-—eargs
The ——eargs option (extended ——args) is like ——args but must be followed by an argument.
The argument is removed from the argument list and substituted in place of occurrences of { }
among the arguments expanded from the ——eargs syntax.

--lisp

——compiled
These options influence the treatment of query files which do not have a suffix indicating their
type. The ——11isp option causes an unsuffixed file to be treated as Lisp source; ——compiled
causes it to be treated as a compiled file.

Moreover, if ——11isp is specified, and an unsuffixed file does not exist, then TXR will add the
".t1" suffix and try the file again; and ——compiled will similarly add the " .t1o" suffix and
try opening the file again. In the same situation, if neither ——11isp nor ——compiled has been
specified, TXR will first try adding the " .txr" suffix. If that fails, then the " .t1o" suffix will
be tried and finally " .t1". Note that ——1isp and ——compiled influence how the argument of
the —£ option is treated, but only if they precede that option.

—-—reexec

On platforms which support the POSIX exec family of functions, this option causes TXR to re-
execute itself. The re-executed image receives the remaining arguments which follow the
—-—reexec argument. Note: this option is useful for supporting setuid operation in hash-hang
scripts. On some platforms, the interpreter designated by a hash-bang script runs without altered
privilege, even if that interpreter is installed setuid. If the interpreter is executed directly, then
setuid applies to it, but not if it is executed via hash bang. If the ——reexec option is used in the
interpreter command line of such a script, the interpreter will re-execute itself, thereby gaining the
setuid privilege. The re-executed image will then obtain the script name from the arguments
which are passed to it and determine whether that script will run setuid. See the section
SETUID/SETGID OPERATION.

——noprofile
If entering the interactive listener, suppress the reading of the . txr_profile in the home direc-
tory. See the Interactive Profile File subsection in the INTERACTIVE LISTENER section of the
manual.

—-—gc—debug
This option enables a behavior which stresses the garbage collector with frequent garbage collec-
tion requests. The purpose is to make it more likely to reproduce certain kinds of bugs. Use of this
option severely degrades the performance of TXR.

Utility Commands 2021-07-12 6

TXR(1) TXR Programming Language TXR(1)

—-—-vg—-debug
If TXR is enabled with Valgrind support, then this option is available. It enables code which uses
the Valgrind API to integrate with the Valgrind debugger, for more accurate tracking of garbage
collected objects. For example, objects which have been reclaimed by the garbage collector are
marked as inaccessible, and marked as uninitialized when they are allocated again.

——free-all
This option specifies that all memory allocated by TXR should be freed upon normal termination.
This behavior is useful for debugging memory leaks. An accurate leak detection tool, such as the
one built into Valgrind, should report zero leaked or still reachable memory if ——free-all has
been used and TXR has terminated normally. that indicates either a leak in TXR, a leak or global
object retention in a platform library, or else a a leak introduced due to misuse of FFI.

—-—dv-regex
If this option is used, then regular expressions are all treated using the derivative-based back-end.
The NFA-based regex implementation is disabled. Normally, only regular expressions which
require the intersection and complement operators are handled using the derivative back-end. This
option makes it possible to test that back-end on test cases that it wouldn’t normally receive.

- Signifies the end of the option list.

- This argument is not interpreted as an option, but treated as a filename argument. After the first
such argument, no more options are recognized. Even if another argument looks like an option, it
is treated as a name. This special argument — means "read from standard input" instead of a file.
The script-file, or any of the data files, may be specified using this option. If two or more
files are specified as —, the behavior is system-dependent. It may be possible to indicate EOF from
the interactive terminal, and then specify more input which is interpreted as the second file, and so
forth.

After the options, the remaining arguments are treated as follows.

If neither the —f nor the —c options were specified, then the first argument is treated as the script-
file. If no arguments are present, then TXR enters interactive mode, provided that none of the —e, —p,
—P or —t options had been processed, in which case it instead terminates.

The TXR Pattern Language has features for implicitly treating the subsequent command-line arguments as
input files. It follows the convention that an argument consisting of a single — (dash) character specifies
that standard input is to be used, instead of opening a file. If the query does not use the @ (next) directive
to select an alternative data source, and a pattern-matching construct is processed which demands data, then
the first argument will be opened as a data source. Arguments not opened as data sources can be assigned
alternative meanings and uses, or can be ignored entirely, under control of the query.

Specifying standard input as a source with an explicit — argument is unnecessary. If no arguments are
present, then TXR scans standard input by default. This was not true in versions of TXR prior to 171; see
the COMPATIBILITY section.

TXR begins by reading the script, which is given as the contents of the argument of the —c option, or else
as the contents of an input source specified by the —f option or by the script—-file argument. If —f or
the script—file argument specify — (dash) then the script is read from standard input.

In the case of the TXR pattern language, the entire query is scanned, internalized, and then begins execut-

ing, if it is free of syntax errors. (TXR Lisp is processed differently, form by form.) On the other hand, the
pattern language reads data files in a lazy manner. A file isn’t opened until the query demands material from

Utility Commands 2021-07-12 7

TXR(1) TXR Programming Language TXR(1)

that file, and then the contents are read on demand, not all at once.

The suffix of the script—-file is significant. If the name has no suffix, or if it has a " . txr " suffix, then
it is assumed to be in the TXR pattern language. If it has the " . £t 1" suffix, then it is assumed to be TXR
Lisp. The ——-11isp option changes the treatment of unsuffixed script file names, causing them to be inter-
preted as TXR Lisp.

If an unsuffixed script file name is specified, and cannot be opened, then TXR will add the " . txr" suffix
and try again. If that fails, it will be tried with the " .t 1" suffix, and treated as TXR Lisp. If the ——1isp
option has been specified, then TXR tries only the " . t1" suffix.

A TXR Lisp file is processed as if by the 1oad macro: forms from the file are read and evaluated. If the
forms do not terminate the TXR process or throw an exception, and there are no syntax errors, then TXR
terminates successfully after evaluating the last form. If syntax errors are encountered in a form, then TXR
terminates unsuccessfully. TXR Lisp is documented in the section TXR LISP.

If a query file is specified, but no file arguments, it is up to the query to open a file, pipe or standard input
via the @ (next) directive prior to attempting to make a match. If a query attempts to match text, but has
run out of files to process, the match fails.

5 STATUS AND ERROR REPORTING
TXR sends errors and verbose logs to the standard error device. The following paragraphs apply when

TXR is run without enabling verbose mode with —v, or the printing of variable bindings with —B or -a.

If the command-line arguments are incorrect, TXR issues an error diagnostic and terminates with a failed
status.

If the script—file specifies a query, and the query has a malformed syntax, TXR likewise issues error
diagnostics and terminates with a failed status.

If the query fails due to a mismatch, TXR terminates with a failed status. No diagnostics are issued.

If the query is well-formed, and matches, then TXR issues no diagnostics, and terminates with a successful
status.

In verbose mode (option —v), TXR issues diagnostics on the standard error device even in situations which
are not erroneous.

In bindings-printing mode (options —B or —a), TXR prints the word false if the query fails, and exits
with a failed termination status. If the query succeeds, the variable bindings, if any, are output on standard
output.

If the script-file is TXR Lisp, then it is processed form by form. Each top-level Lisp form is evalu-
ated after it is read. If any form is syntactically malformed, TXR issues diagnostics and terminates unsuc-
cessfully. This is somewhat different from how the pattern language is treated: a script in the pattern lan-
guage is parsed in its entirety before being executed.

6 BASIC TXR SYNTAX
6.1 Comments

A query may contain comments which are delimited by the sequence @; and extend to the end of the line.
Whitespace can occur between the @ and ;. A comment which begins on a line swallows that entire line, as
well as the newline which terminates it. In essence, the entire comment line disappears. If the comment

Utility Commands 2021-07-12 8

TXR(1) TXR Programming Language TXR(1)

follows some material in a line, then it does not consume the newline. Thus, the following two queries are

equivalent:

1. @a@; comment: match whole line against variable @a
@; this comment disappears entirely
Q@b

2. Qa
Q@b

The comment after the @a does not consume the newline, but the comment which follows does. Without
this intuitive behavior, line comment would give rise to empty lines that must match empty lines in the data,
leading to spurious mismatches.

Instead of the ; character, the # character can be used. This is an obsolescent feature.

6.2 Hash-Bang Support

TXR has several features which support use of the hash-bang convention for creating apparently standalone
executable programs.

6.2.1 Basic Hash Bang

Special processing is applied to TXR query or TXR Lisp script files that are specified on the command line
via the —f option or as the first non-option argument. If the first line of such a file begins with the charac-
ters # !, that entire line is consumed and processed specially.

This removal allows for TXR queries to be turned into standalone executable programs in the POSIX envi-
ronment using the hash-bang mechanism. Unlike most interpreters, TXR applies special processing to the
#! line, which is described below, in the section Argument Generation with the Null Hack.

Shell session example: create a simple executable program called "twoline.txr" and run it. This
assumes TXR is installed in /usr/bin.

$ cat > hello.txr
#!/usr/bin/txr

@(bind a "Hey")

@ (output)

Hello, world!

@ (end)

$ chmod a+x hello.txr
$./hello.txr

Hello, world!

When this plain hash-bang line is used, TXR receives the name of the script as an argument. Therefore, it
is not possible to pass additional options to TXR. For instance, if the above script is invoked like this

$./hello.txr -B

the —B option isn’t processed by TXR, but treated as an additional argument, just as if txr script-
file -B had been executed directly.

This behavior is useful if the script author wants not to expose the TXR options to the user of the script.

Utility Commands 2021-07-12 9

TXR(1) TXR Programming Language TXR(1)

However, the hash-bang line can use the —£ option:
#!/usr/bin/txr -£f

Now, the name of the script is passed as an argument to the — £ option, and TXR will look for more options
after that, so that the resulting program appears to accept TXR options. Now we can run

$./hello.txr -B
Hello, world!
a=" Hey "

The —B option is honored.

6.2.2 Argument Generation with ——args and ——eargs

On some operating systems, it is not possible to pass more than one argument through the hash-bang mech-
anism. That is to say, this will not work.

#!/usr/bin/txr -B -f
To support systems like this, TXR supports the special argument ——args, as well as an extended version,
-—eargs. With ——args, it is possible to encode multiple arguments into one argument. The —-args
option must be followed by a separator character, chosen by the programmer. The characters after that are
split into multiple arguments on the separator character. The ——args option is then removed from the
argument list and replaced with these arguments, which are processed in its place.
Example:

#!/usr/bin/txr --args:-B:-f
The above has the same behavior as

#!/usr/bin/txr -B -f

on a system which supports multiple arguments in the hash-bang line. The separator character is the colon,
and so the remainder of that argument, —-B: — £, is split into the two arguments -B —f£.

The ——eargs option is similar to ——args, but must be followed by one more argument. After ——eargs
performs the argument splitting in the same manner as ——args, any of the arguments which it produces
which are the two-character sequence {} are replaced with that following argument. Whether or not the
replacement occurs, that following argument is then removed.
Example:

#!/usr/bin/txr —--eargs:-B:{}:——foo:42
This has an effect which cannot be replicated in any known implementation of the hash-bang mechanism.
Suppose that this hash-bang line is placed in a script called script.txr. When this script is invoked
with arguments, as in:

script.txr a b c

then TXR is invoked similarly to:

/usr/bin/txr --eargs:-B:{}:——fo0:42 script.txr a b c

Utility Commands 2021-07-12 10

TXR(1)

TXR Programming Language TXR(1)

Then, when ——eargs processing takes place, firstly the argument sequence
-B {} ——foo 42

is produced by splitting into four fields using the : (colon) character as the separator. Then, within these
four fields, all occurrences of { } are replaced with the following argument script . txr, resulting in:

-B script.txr —--foo 42
Furthermore, that script . txr argument is removed from the remaining argument list.
The four arguments are then substituted in place of the original ~—eargs:-B: {} :——fo0:42 syntax.
The resulting TXR invocation is, therefore:

/usr/bin/txr -B script.txr —--foo 42 a b c

Thus, ——eargs allows some arguments to be encoded into the interpreter script, such that script name is
inserted anywhere among them, possibly multiple times. Arguments for the interpreter can be encoded, as
well as arguments to be processed by the script.

6.2.3 Argument Generation with the Null Hack

The —-args and ——eargs mechanisms do not solve the following problem: the POSIX env utility is
often exploited for its PATH searching capability, and used to express hash-bang scripts in the following
way:

#!/usr/bin/env txr

Here, the env utility searches for the txr program in the directories indicated by the PATH variable,
which liberates the script from having to encode the exact location where the program is installed. How-
ever, if the operating system allows only one argument in the hash-bang mechanism, then no arguments can
be passed to the program.

To mitigate this problem, TXR supports a special feature in its hash-bang support. If the hash-bang line
contains a null byte, then the text from after the null byte until the end of the line is split into fields using
the space character as a separator, and these fields are inserted into the command line. This manipulation
happens during command-line processing, i.e. prior to the execution of the file. If this processing is applied
to a file that is specified using the —£ option, then the arguments which arise from the special processing
are inserted after that option and its argument. If this processing is applied to the file which is the first non-
option argument, then the options are inserted before that argument. However, care is taken not to process
that argument a second time. In either situation, processing of the command-line options continues, and the
arguments which are processed next are the ones which were just inserted. This is true even if the options
had been inserted as a result of processing the first non-option argument, which would ordinarily signal the
termination of option processing.

In the following examples, it is assumed that the script is named, and invoked, as
/home/Jjenny/foo.txr, and is given arguments --bar abc, and that txr resolves to
/usr/bin/txr. The <NUL> code indicates a literal ASCII NUL character (the zero byte).

Basic example:

#!/usr/bin/env txr<NUL>-a 3

Here, env searches for txr, finding it in /usr/bin. Thus, including the executable name, TXR receives

Utility Commands 2021-07-12 11

TXR(1) TXR Programming Language TXR(1)

this full argument list:
/usr/bin/txr /home/jenny/foo.txr —--bar abc
The first non-option argument is the name of the script. TXR opens the script, and notices that it begins
with a hash-bang line. It consumes the hash-bang line and finds the null byte inside it, retrieving the char-
acter string after it, which is "-a 3". This is split into the two arguments —a and 3, which are then
inserted into the command line ahead of the the script name. The effective command line then becomes:
/usr/bin/txr -a 3 /home/Jjenny/foo.txr --bar abc
Command-line option processing continues, beginning with the —a option. After the option is processed,
/home/jenny/foo.txr is encountered again. This time it is not opened a second time; it signals the
end of option processing, exactly as it would immediately do if it hadn’t triggered the insertion of any argu-
ments.
Advanced example: use env to invoke t xr, passing options to the interpreter and to the script:

#!/usr/bin/env txr<NUL>--eargs:-C:175:{}:--debug

This example shows how ——eargs can be used in conjunction with the null hack. When txr begins exe-
cuting, it receives the arguments

/usr/bin/txr /home/jenny/foo.txr

The script file is opened, and the arguments delimited by the null character in the hash-bang line are
inserted, resulting in the effective command line:

/usr/bin/txr —--eargs:-C:175:{}:--debug /home/Jjenny/foo.txr
Next, ——eargs is processed in the ordinary way, transforming the command line into:

/usr/bin/txr -C 175 /home/jenny/foo.txr —--debug
The name of the script file is encountered, and signals the end of option processing. Thus t xr receives the
—C option, instructing it to emulate some behaviors from version 175, and the /home/jenny/foo.txr
script receives ——debug as its argument: it executes with the *args* list containing one element, the
character string "--debug".
The hash-bang null-hack feature was introduced in TXR 177. Previous versions ignore the hash-bang line,
performing no special processing. Where a risk exists that programs which depend on the feature might be
executed by an older version of TXR, care must be taken to detect and handle that situation, either by

means of the txr-version variable, or else by some logic which infers that the processing of the hash-
bang line hasn’t been performed.

6.2.4 Passing Options to TXR via Hash-Bang Null Hack

It is possible to use the Hash-Bang Null Hack, such that the resulting executable program recognizes TXR
options. This is made possible by a special behavior in the processing of the — £ option.

For instance, suppose that the effect of the following familiar hash-bang line is required:
#!/path/to/txr -f

However, suppose there is also a requirement to use the env utility to find TXR. Furthermore, the

Utility Commands 2021-07-12 12

TXR(1)

TXR Programming Language TXR(1)

operating system allows only one hash-bang argument. Using the Null Hack, this is rewritten as:
#!/usr/bin/env txr<NUL>-f

then if the script is invoked with arguments —a b ¢, the command line will ultimately be transformed
into:

/path/to/txr —-f /path/to/scriptfile -i a b ¢
which allows TXR to process the —1i option, leaving a, b and c as arguments for the script.

However, note that there is a subtle issue with the —f option that has been inserted via the Null Hack:
namely, this insertion happens after TXR has opened the script file and read the hash-bang line from it.
This means that when the inserted —f option is being processed, the script file is already open. A special
behavior occurs. The —f option processing notices that the argument to —£ is identical to the pathname of
name of the script file that TXR has already opened for processing. The —f option and its argument are
then skipped.

6.2.5 Hash Bang and Setuid

TXR supports setuid hash-bang scripting, even on platforms that do not support setuid and setgid attributes
on hash-bang scripts. On such platforms, TXR has to be installed setuid/setgid. See the section
SETUID/SETGID OPERATION. On some platforms, it may also be necessary to to use the ——reexec
option.

6.3 Whitespace

Outside of directives, whitespace is significant in TXR queries, and represents a pattern match for white-
space in the input. An extent of text consisting of an undivided mixture of tabs and spaces is a whitespace
token.

Whitespace tokens match a precisely identical piece of whitespace in the input, with one exception: a
whitespace token consisting of precisely one space has a special meaning. It is equivalent to the regular
expression @/ []+/: match an extent of one or more spaces (but not tabs!). Multiple consecutive spaces

do not have this meaning.

Thus, the query line "a b" (one space between a and b) matches "a b" with any number of spaces
between the two letters.

For matching a single space, the syntax @\ can be used (backslash-escaped space).

It is more often necessary to match multiple spaces than to match exactly one space, so this rule simplifies
many queries and inconveniences only a few.

In output clauses, string and character literals and quasiliterals, a space token denotes a space.

6.4 Text

Query material which is not escaped by the special character @ is literal text, which matches input character
for character. Text which occurs at the beginning of a line matches the beginning of a line. Text which
starts in the middle of a line, other than following a variable, must match exactly at the current position,
where the previous match left off. Moreover, if the text is the last element in the line, its match is anchored
to the end of the line.

An empty query line matches an empty line in the input. Note that an empty input stream does not contain

Utility Commands 2021-07-12 13

TXR(1) TXR Programming Language TXR(1)

any lines, and therefore is not matched by an empty line. An empty line in the input is represented by a
newline character which is either the first character of the file, or follows a previous newline-terminated
line.

Input streams which end without terminating their last line with a newline are tolerated, and are treated as if
they had the terminator.

Text which follows a variable has special semantics, described in the section Variables below.

A query may not leave a line of input partially matched. If any portion of a line of input is matched, it must
be entirely matched, otherwise a matching failure results. However, a query may leave unmatched lines.
Matching only four lines of a ten-line file is not a matching failure. The eof directive can be used to
explicitly match the end of a file.

In the following example, the query matches the text, even though the text has an extra line.

code: Four score and seven
years ago our

data: Four score and seven
years ago our
forefathers

In the following example, the query fails to match the text, because the text has extra material on one line
that is not matched:

code: I can carry nearly eighty gigs
in my head

data: I can carry nearly eighty gigs of data
in my head

Needless to say, if the text has insufficient material relative to the query, that is a failure also.

To match arbitrary material from the current position to the end of a line, the "match any sequence of char-
acters, including empty" regular expression @/ . */ can be used. Example:

code: I can carry nearly eighty gigs@/.*/

data: I can carry nearly eighty gigs of data

In this example, the query matches, since the regular expression matches the string "of data". (See the Reg-
ular Expressions section below.)

Another way to do this is:

code: I can carry nearly eighty gigs@ (skip)

6.5 Special Characters in Text

Control characters may be embedded directly in a query (with the exception of newline characters). An
alternative to embedding is to use escape syntax. The following escapes are supported:

@\newline
A backslash immediately followed by a newline introduces a physical line break without breaking
up the logical line. Material following this sequence continues to be interpreted as a continuation
of the previous line, so that indentation can be introduced to show the continuation without

Utility Commands 2021-07-12 14

TXR(1)

TXR Programming Language TXR(1)

appearing in the data.

@\ space
A backslash followed by a space encodes a space. This is useful in line continuations when it is
necessary for some or all of the leading spaces to be preserved. For instance the two line sequence

abcd@\
@\ efg

is equivalent to the line
abcd efg

The two spaces before the @\ in the second line are consumed. The spaces after are preserved.

@\a Alert character (ASCII 7, BEL).

@\b Backspace (ASCII 8, BS).

@\t Horizontal tab (ASCII 9, HT).

@\n Line feed (ASCII 10, LF). Serves as abstract newline on POSIX systems.
@\v Vertical tab (ASCII 11, VT).

@\f Form feed (ASCII 12, FF). This character clears the screen on many kinds of terminals, or ejects a
page of text from a line printer.

@\r Carriage return (ASCII 13, CR).
@\e Escape (ASCII 27, ESC)

@\xhex—-digits
A @\x immediately followed by a sequence of hex digits is interpreted as a hexadecimal numeric
character code. For instance @\x41 is the ASCII character A. If a semicolon character immedi-
ately follows the hex digits, it is consumed, and characters which follow are not considered part of
the hex escape even if they are hex digits.

@\octal-digits
A @\ immediately followed by a sequence of octal digits (0 through 7) is interpreted as an octal
character code. For instance @\ 010 is character 8, same as @\b. If a semicolon character imme-
diately follows the octal digits, it is consumed, and subsequent characters are not treated as part of
the octal escape, even if they are octal digits.

Note that if a newline is embedded into a query line with @\n, this does not split the line into two; it’s
embedded into the line and thus cannot match anything. However, @\n may be useful in the @ (cat)
directive and in @ (output).

6.6 Character Handling and International Characters

TXR represents text internally using wide characters, which are used to represent Unicode code points.
Script source code, as well as all data sources, are assumed to be in the UTF-8 encoding. In TXR and
TXR Lisp source, extended characters can be used directly in comments, literal text, string literals,
quasiliterals and regular expressions. Extended characters can also be expressed indirectly using hexadeci-
mal or octal escapes. On some platforms, wide characters may be restricted to 16 bits, so that TXR can
only work with characters in the BMP (Basic Multilingual Plane) subset of Unicode.

TXR does not use the localization features of the system library; its handling of extended characters is not
affected by environment variables like LANG and L_CTYPE. The program reads and writes only the
UTF-8 encoding.

Utility Commands 2021-07-12 15

TXR(1) TXR Programming Language TXR(1)

TXR deals with UTF-8 separately in its parser and in its I/O streams implementation.

TXR’s text streams perform UTF-8 conversion internally, such that TXR applications use Unicode code
points.

In text streams, invalid UTF-8 bytes are treated as follows. When an invalid byte is encountered in the mid-
dle of a multibyte character, or if the input ends in the middle of a multibyte character, or if an invalid char-
acter is decoded, such as an overlong from, or code in the range U+DCOO0 through U+DCFF, the UTF-8
decoder returns to the starting byte of the ill-formed multibyte character, and extracts just one byte, map-
ping that byte to the Unicode character range U+DCO0O0 through U+DCFF, producing that code point as the
decoded result. The decoder is then reset to its initial state and begins decoding at the following byte,
where the same algorithm is repeated.

Furthermore, because TXR internally uses a null-terminated character representation of strings which eas-
ily interoperates with C language interfaces, when a null character is read from a stream, TXR converts it
to the code U+DCO00. On output, this code converts back to a null byte, as explained in the previous para-
graph. By means of this representational trick, TXR can handle textual data containing null bytes.

In contrast to the above, the TXR parser scans raw UTF-8 bytes from a binary stream, rather than using a
text stream. The parser performing its own recognition of UTF-8 sequences in certain language constructs,

using a UTF-8 decoder only when processing certain kinds of tokens.

Comments are read without regard for encoding, so invalid encoding bytes in comments are not detected. A
comment is simply a sequence of bytes terminated by a newline.

Invalid UTF-8 encountered while scanning identifiers and character names in character literal (hash-back-
slash) syntax is diagnosed as a syntax error.

UTF-8 in string literals is treated in the same way as UTF-8 in text streams. Invalid UTF-8 bytes are

mapped into code points in the U+DC000 through U+DCFF range, and incorporated as such into the result-
ing string object which the literal denotes. The same remarks apply to regular-expression literals.

6.7 Regular Expression Directives

In place of a piece of text (see section Text above), a regular-expression directive may be used, which has
the following syntax:

@/RE/

where the RE part enclosed in slashes represents regular-expression syntax (described in the section Regu-
lar Expressions below).

Long regular expressions can be broken into multiple lines using a backslash-newline sequence. White-
space before the sequence or after the sequence is not significant, so the following two are equivalent:

@/reg \
ular/

@/regular/
There may not be whitespace between the backslash and newline.
Whereas literal text simply represents itself, regular expression denotes a (potentially infinite) set of texts.

The regular-expression directive matches the longest piece of text (possibly empty) which belongs to the set
denoted by the regular expression. The match is anchored to the current position; thus if the directive is the

Utility Commands 2021-07-12 16

TXR(1) TXR Programming Language TXR(1)

first element of a line, the match is anchored to the start of a line. If the regular-expression directive is the
last element of a line, it is anchored to the end of the line also: the regular expression must match the text
from the current position to the end of the line.

Even if the regular expression matches the empty string, the match will fail if the input is empty, or has run
out of data. For instance suppose the third line of the query is the regular expression @/ . */, but the input
is a file which has only two lines. This will fail: the data has no line for the regular expression to match. A
line containing no characters is not the same thing as the absence of a line, even though both abstractions
imply an absence of characters.

Like text which follows a variable, a regular-expression directive which follows a variable has special
semantics, described in the section Variables below.

6.8 Variables

Much of the query syntax consists of arbitrary text, which matches file data character for character. Embed-
ded within the query may be variables and directives which are introduced by a @ character. Two consecu-
tive Q@ characters encode a literal @.

A variable-matching or substitution directive is written in one of several ways:

@sident

@{bident}

@*sident

@*{bident}

@{bident /regex/}
@Q{bident (fun [arg ...])}
@{bident number}

@{bident bident}

The forms with an * indicate a long match, see Longest Match below. The last three forms with the
embedded regexp / regex/ or number or function have special semantics; see Positive Match below.

The identifier t cannot be used as a name; it is a reserved symbol which denotes the value true. An attempt
to use the variable @t will result in an exception. The symbol nil can be used where a variable name is
required syntactically, but it has special semantics, described in a section below.

A sident is a "simple identifier" form which is not delimited by braces.

A sident consists of any combination of one or more letters, numbers, and underscores. It may not look
like a number, so that for instance 123 is not a valid sident, but 12A is valid. Case is sensitive, so that
FOO is different from foo, which is different from Foo.

The braces around an identifier can be used when material which follows would otherwise be interpreted as
being part of the identifier. When a name is enclosed in braces it is a bident.

The following additional characters may be used as part of a bident which are not allowed in a sident:

1S % & *+ - <=>72\

Moreover, most Unicode characters beyond U+007F may appear in a bident, with certain exceptions. A
character may not be used if it is any of the Unicode space characters, a member of the high or low surro-
gate region, a member of any Unicode private-use area, or is either of the two characters U+FFFE and
U+FFFF. These situations produce a syntax error. Invalid UTF-8 in an identifier is also a syntax error.

Utility Commands 2021-07-12 17

TXR(1) TXR Programming Language TXR(1)

The rule still holds that a name cannot look like a number so +123 is not a valid bident but these are
valid: a->b, *xyz*, foo-bar.

The syntax @QFOO_bar introduces the name FOO_bar, whereas @ {FOO}_bar means the variable named
"FOO" followed by the text "_bar". There may be whitespace between the @ and the name, or opening
brace. Whitespace is also allowed in the interior of the braces. It is not significant.

If a variable has no prior binding, then it specifies a match. The match is determined from some current
position in the data: the character which immediately follows all that has been matched previously. If a
variable occurs at the start of a line, it matches some text at the start of the line. If it occurs at the end of a
line, it matches everything from the current position to the end of the line.

6.9 Negative Match

If a variable is one of the plain forms

@sident
@{bident}
@*sident
@*{bident}

then this is a "negative match". The extent of the matched text (the text bound to the variable) is deter-
mined by looking at what follows the variable, and ranges from the current position to some position where
the following material finds a match. This is why this is called a "negative match": the spanned text which
ends up bound to the variable is that in which the match for the trailing material did not occur.

A variable may be followed by a piece of text, a regular-expression directive, a function call, a directive,
another variable, or nothing (i.e. occurs at the end of a line). These cases are described in detail below.

6.9.1 Variable Followed by Nothing

If the variable is followed by nothing, the negative match extends from the current position in the data, to
the end of the line. Example:

code: a b c QFOO
data: a b c defghijk
result: FOO="defghijk"

6.9.2 Variable Followed by Text
For the purposes of determining the negative match, text is defined as a sequence of literal text and regular
expressions, not divided by a directive. So for instance in this example:
@a:@/foo/bcd e (maybe) £Q (end)
the variable a is considered to be followed by ": @/ foo/bcd e".

If a variable is followed by text, then the extent of the negative match is determined by searching for the
first occurrence of that text within the line, starting at the current position.

The variable matches everything between the current position and the matching position (not including the
matching position). Any whitespace which follows the variable (and is not enclosed inside braces that sur-
round the variable name) is part of the text. For example:

code: a b @FO0 e £

Utility Commands 2021-07-12 18

TXR(1) TXR Programming Language TXR(1)

data: abcdef
result: FOO="c d"

In the above example, the pattern text "a b " matches the data "a b ". So when the @FOO variable is
processed, the data being matched is the remaining "c d e £". The text which follows @FOO is " e
f£". This is found within the data "c d e £" at position 3 (counting from 0). So positions 0-2 ("c
d") constitute the matching text which is bound to FOO.

6.9.3 Variable Followed by a Function Call or Directive

If the variable is followed by a function call, or a directive, the extent is determined by scanning the text for
the first position where a match occurs for the entire remainder of the line. (For a description of functions,
see Functions.)

For example:
@foo@ (bind a "abc")xyz

Here, @foo will match the text from the current position to where "xyz" occurs, even though there is a
@ (bind) directive. Furthermore, if more material is added after the "xyz", it is part of the search. Note
the difference between the following two:

@foo@/abc/R (func)
@fooR (func) @/abc/

In the first example, @ foo matches the text from the current position until the match for the regular expres-
sion "abc". @ (func) is not considered when processing @foo. In the second example, @ foo matches
the text from the current position until the position which matches the function call, followed by a match
for the regular expression. The entire sequence @ (func) @/abc/ is considered.

6.9.4 Consecutive Variables

If an unbound variable specifies a fixed-width match or a regular expression, then the issue of consecutive
variables does not arise. Such a variable consumes text regardless of any context which follows it.

However, what if an unbound variable with no modifier is followed by another variable? The behavior
depends on the nature of the other variable.

If the other variable is also unbound, and also has no modifier, this is a semantic error which will cause the
query to fail. A diagnostic message will be issued, unless operating in quiet mode via —q. The reason is
that there is no way to bind two consecutive variables to an extent of text; this is an ambiguous situation,
since there is no matching criterion for dividing the text between two variables. (In theory, a repetition of
the same variable, like @FOOQ@F OO, could find a solution by dividing the match extent in half, which would
work only in the case when it contains an even number of characters. This behavior seems to have dubious
value.)

An unbound variable may be followed by one which is bound. The bound variable is effectively replaced by
the text which it denotes, and the logic proceeds accordingly.

It is possible for a variable to be bound to a regular expression. If x is an unbound variable and y is bound
to a regular expression RE, then @x@y means @x@/RE/. A variable v can be bound to a regular expres-

sion using, for example, @ (bind v #/RE/).

The @* syntax for longest match is available. Example:

Utility Commands 2021-07-12 19

TXR(1) TXR Programming Language TXR(1)

code: Q@FO0: @BARRFOO
data: xyz:defxyz
result: FOO=xyz, BAR=def

Here, FOO is matched with "xyz", based on the delimiting around the colon. The colon in the pattern then
matches the colon in the data, so that BAR is considered for matching against "defxyz". BAR is followed
by FOO, which is already bound to "xyz". Thus "xyz" is located in the "defxyz" data following
"def", and so BAR is bound to "def".

If an unbound variable is followed by a variable which is bound to a list, or nested list, then each character
string in the list is tried in turn to produce a match. The first match is taken.

An unbound variable may be followed by another unbound variable which specifies a regular expression or
function call match. This is a special case called a "double variable match". What happens is that the text is
searched using the regular expression or function. If the search fails, then neither variable is bound: it is a
matching failure. If the search succeeds, then the first variable is bound to the text which is skipped by the
search. The second variable is bound to the text matched by the regular expression or function. Example:

code: @foo@{bar /abc/}
data: xyzQ@#abc
result: foo="xyz@#", BAR="abc"
6.9.5 Consecutive Variables via Directive
Two variables can be de facto consecutive in a manner shown in the following example:
@varl@ (all)@var2@ (end)
This is treated just like the variable followed by directive. No semantic error is identified, even if both vari-
ables are unbound. Here, @var2 matches everything at the current position, and so @varl ends up bound

to the empty string.

Example 1: b matches at position 0 and a binds the empty string:

code: @a@(all) @b@ (end)

data: abc
result: a=""
b="abc"

Example 2: *a specifies longest match (see Longest Match below), and so it takes everything:
code: @*a@ (all) @bQ (end)

data: abc

result: a="abc"
b=""

6.9.6 Longest Match

The closest-match behavior for the negative match can be overridden to longest match behavior. A special
syntax is provided for this: an asterisk between the @ and the variable, e.g.:

code: a @*{FOO}cd
data: a b cdcdcded
result: FOO="b cdcdcd"
code: a @{FOO}cd

Utility Commands 2021-07-12 20

TXR(1) TXR Programming Language TXR(1)

data: a b cdcdcd
result: FOO="b "

In the former example, the match extends to the rightmost occurrence of "cd", and so FOO receives "b
cdcdced". In the latter example, the * syntax isn’t used, and so a leftmost match takes place. The extent
covers only the "b ", stopping at the first "cd" occurrence.

6.10 Positive Match

There are syntactic variants of variable syntax which have an embedded expression enclosed with the vari-
able in braces:

@{bident /regex/}
@{bident (fun [args ...]1)}
@{bident number}
@{bident bident}

These specify a variable binding that is driven by a positive match derived from a regular expression, func-
tion or character count, rather than from trailing material (which is regarded as a "negative" match, since
the variable is bound to material which is skipped in order to match the trailing material). In the / regex/
form, the match extends over all characters from the current position which match the regular expression
regex. (See the Regular Expressions section below.) In the (fun [args ...1) form, the match
extends over characters which are matched by the call to the function, if the call succeeds. Thus @{x (y
z w) } isjustlike @ (y z w), except that the region of text skipped over by @ (y z w) is also bound to
the variable x. See Functions below.

In the number form, the match processes a field of text which consists of the specified number of charac-
ters, which must be a nonnegative number. If the data line doesn’t have that many characters starting at the
current position, the match fails. A match for zero characters produces an empty string. The text which is
actually bound to the variable is all text within the specified field, but excluding leading and trailing white-
space. If the field contains only spaces, then an empty string is extracted.

This syntax is processed without considering any following syntax. A positive match may be directly fol-
lowed by an unbound variable.

The @{bident bident} syntax allows the number or regex modifier to come from a variable. The

variable must be bound and contain a nonnegative integer or regular expression. For example, @ {x v}
behaves like @ {x 3} if y is bound to the integer 3. It is an error if y is unbound.

6.11 Special Symbols nil and t
Just like in the Common Lisp language, the names nil and t are special.

nil symbol stands for the empty list object, an object which marks the end of a list, and Boolean false. It is
synonymous with the syntax () which may be used interchangeably with ni1 in most constructs.

In TXR Lisp, nil and t cannot be used as variables. When evaluated, they evaluate to themselves.
In the TXR pattern language, ni1 can be used in the variable binding syntax, but does not create a binding;
it has a special meaning. It allows the variable-matching syntax to be used to skip material, in ways similar

to the skip directive.

The nil symbol is also used as a block name, both in the TXR pattern language and in TXR Lisp. A
block named nil is considered to be anonymous.

Utility Commands 2021-07-12 21

TXR(1)

TXR Programming Language TXR(1)

6.12 Keyword Symbols

Names beginning with the : (colon) character are keyword symbols. These also stand for themselves and
may not be used as variables. Keywords are useful for labeling information and situations.

6.13 Regular Expressions

Regular expressions are a language for specifying sets of character strings. Through the use of pattern-
matching elements, a regular expression is able to denote an infinite set of texts. TXR contains an original
implementation of regular expressions, which supports the following syntax:

[]

The period is a "wildcard" that matches any character.

Character class: matches a single character, from the set specified by special syntax written
between the square brackets. This supports basic regexp character class syntax. POSIX notation
like [:digit:] is not supported. The regex tokens \s, \d and \w are permitted in character
classes, but not their complementing counterparts. These tokens simply contribute their characters
to the class. The class [a—-zA-Z] means match an uppercase or lowercase letter; the class
[0-9a-f] means match a digit or a lowercase letter; the class [~0—9] means match a non-digit,
and so forth. There are no locale-specific behaviors in TXR regular expressions; [A-Z] denotes
an ASCII/Unicode range of characters. The class [\d.] means match a digit or the period char-
acter. A] or — can be used within a character class, but must be escaped with a backslash. A ~ in
the first position denotes a complemented class, unless it is escaped by backslash. In any other
position, it denotes itself. Two backslashes code for one backslash. So for instance [\ [\-]
means match a [or — character, ["~] means match any character other than ~, and [\"\\]
means match either a ~ or a backslash. Regex operators such as *, + and & appearing in a charac-
ter class represent ordinary characters. The characters —, 1 and ~ occurring outside of a character
class are ordinary. Unescaped / characters can appear within a character class. The empty charac-
ter class [] matches no character at all, and its complement [~] matches any character, and is
treated as a synonym for the . (period) wildcard operator.

\s, \wand \d

These regex tokens each match a single character. The \'s regex token matches a wide variety of
ASCII whitespace characters and Unicode spaces. The \w token matches alphabetic word charac-
ters; it is equivalent to the character class [A-Za-z_]. The \d token matches a digit, and is
equivalentto [0-9].

\S, \Wand \D

empty

These regex tokens are the complemented counterparts of \s, \w and \d. The \S token matches
all those characters which \'s does not match, \W matches all characters that \w does not match
and \D matches nondigits.

An empty expression is a regular expression. It represents the set of strings consisting of the empty
string; i.e. it matches just the empty string. The empty regex can appear alone as a full regular
expression (for instance the TXR syntax @// with nothing between the slashes) and can also be
passed as a subexpression to operators, though this may require the use of parentheses to make the
empty regex explicit. For example, the expression a | means: match either a, or nothing. The
forms * and (*) are syntax errors; though not useful, the correct way to match the empty expres-
sion zero or more times is the syntax () *.

nomatch

The nomatch regular expression represents the empty set: it matches no strings at all, not even the
empty string. There is no dedicated syntax to directly express nomatch in the regex language.
However, the empty character class [] is equivalent to nomatch, and may be considered to be a
notation for it. Other representations of nomatch are possible: for instance, the regex ~.* which
is the complement of the regex that denotes the set of all possible strings, and thus denotes the
empty set. A nomatch has uses; for instance, it can be used to temporarily "comment out" regular
expressions. The regex ([]abc | xyz) is equivalent to (xyz), since the []abc branch cannot
match anything. Using [] to "block" a subexpression allows you to leave it in place, then enable it

Utility Commands 2021-07-12 22

TXR(1)

R*

R+

R1%R2

R1R2
R1|R2

R1&R2

TXR Programming Language TXR(1)

later by removing the "block".

If R is a regular expression, then so is (R). The contents of parentheses denote one regular
expression unit, so that for instance in (RE) *, the * operator applies to the entire parenthesized
group. The syntax () is valid and equivalent to the empty regular expression.

Optionally match the preceding regular expression R.

Match the expression R zero or more times. This operator is sometimes called the "Kleene star", or
"Kleene closure". The Kleene closure favors the longest match. Roughly speaking, if there are
two or more ways in which R1*R2 can match, then that match occurs in which R1* matches the
longest possible text.

Match the preceding expression R one or more times. Like R*, this favors the longest possible
match: R+ is equivalent to RR*.

Match R1 zero or more times, then match R2. If this match can occur in more than one way, then
it occurs such that R1 is matched the fewest number of times, which is opposite from the behavior
of R1*R2. Repetitions of R1 terminate at the earliest point in the text where a nonempty match
for R2 occurs. Because it favors shorter matches, % is termed a non-greedy operator. If R2 is the
empty expression, or equivalent to it, then R1%R2 reduces to R1*. So for instance (R%) is equiv-
alent to (R*), since the missing right operand is interpreted as the empty regex. Note that whereas
the expression (R1*R2) is equivalent to (R1*)R2, the expression (R1%R2) is not equivalent to
(R1%)R2. Also note that A (XY%Z) B is equivalent to AX (Y%Z)B. This is because the prece-
dence of % is higher than that of catenation on its left side; this rule prevents the given syntax from
expressing the XY catenation. The expression may be understood as: A (X (Y%$Z)) B where the
inner parentheses clarify how the syntax surrounding the % operator is being parsed, and the outer
parentheses are superfluous. The correct way to assert catenation of XY as the left operand of % is
A (XY) $ZB. To specify XY as the left operand, and limit the right operand to just Z, the correct
syntax is A ((XY) $Z) B. By contrast, the expression A (X$YZ) B is not equivalent to A (X$Y) ZB
because the precedence of % is lower than that of catenation on its right side. The operator is effec-
tively "bi-precedential”.

Match the opposite of the following expression R; that is, match exactly those texts that R does not
match. This operator is called complement, or logical not.

Two consecutive regular expressions denote catenation: the left expression must match, and then
the right.

Match either the expression R1 or R2. This operator is known by a number of names: union, logi-
cal or, disjunction, branch, or alternative.

Match both the expression R1 and R2 simultaneously; i.e. the matching text must be one of the
texts which are in the intersection of the set of texts matched by R1 and the set matched by R2.
This operator is called intersection, logical and, or conjunction.

Any character which is not a regular-expression operator, a backslash escape, or the slash delimiter, denotes
a one-position match of that character itself.

Any of the special characters, including the delimiting /, and the backslash, can be escaped with a back-
slash to suppress its meaning and denote the character itself.

Furthermore, all of the same escapes that are described in the section Special Characters in Text above are
supported — the difference is that in regular expressions, the @ character is not required, so for example a
tab is coded as \t rather than @\t. Octal and hex character escapes can be optionally terminated by a
semicolon, which is useful if the following characters are octal or hex digits not intended to be part of the

escape.

Only the above escapes are supported. Unlike in some other regular-expression implementations, if a

Utility Commands 2021-07-12 23

TXR(1)

TXR Programming Language TXR(1)

backlash appears before a character which isn’t a regex special character or one of the supported escape
sequences, it is an error. This wasn’t true of historic versions of TXR. See the COMPATIBILITY section.

Precedence table, highest to lowest:

Operators Class Associativity
(R) T[] primary

R? R+ R* R%... postfix left-to-right
RI1R2 catenation left-to-right
"R ...%R unary right-to-left
R1&R2 intersection left-to-right
R1|R2 union left-to-right

The % operator is like a postfix operator with respect to its left operand, but like a unary operator with

respect to its right operand. Thus a"b%c~dis a(~ (b% (c(~d)))), demonstrating right-to-left associa-
tivity, where all of b% may be regarded as a unary operator being applied to ¢~d. Similarly, a?*+%b
means (((a?) *)+) $b, where the trailing $b behaves like a postfix operator.

In TXR, regular expression matches do not span multiple lines. The regex language has no feature for mul-
tiline matching. However, the @ (freeform) directive allows the remaining portion of the input to be
treated as one string in which line terminators appear as explicit characters. Regular expressions may freely
match through this sequence.

It’s possible for a regular expression to match an empty string. For instance, if the next input character is z,
facing the regular expression /a?/, there is a zero-character match: the regular expression’s state machine
can reach an acceptance state without consuming any characters. Examples:

code: @AQ/az/@/.*/
data: 22227

result: A=""

code: @{A /a?/}@B
data: 22227

result: A="", B="zzzz"
code: @*A@/a?/

data: 22227

result: A="zzzzz"

In the first example, variable QA is followed by a regular expression which can match an empty string. The
expression faces the letter z at position 0 in the data line. A zero-character match occurs there, therefore the
variable A takes on the empty string. The @/ . */ regular expression then consumes the line.

Similarly, in the second example, the /a?/ regular expression faces a z, and thus yields an empty string
which is bound to A. Variable @B consumes the entire line.

The third example requests the longest match for the variable binding. Thus, a search takes place for the
rightmost position where the regular expression matches. The regular expression matches anywhere, includ-
ing the empty string after the last character, which is the rightmost place. Thus variable A fetches the entire
line.

For additional information about the advanced regular-expression operators, see NOTES ON EXOTIC
REGULAR EXPRESSIONS below.

Utility Commands 2021-07-12 24

TXR(1) TXR Programming Language TXR(1)

6.14 Compound Expressions

If the @ escape character is followed by an open parenthesis or square bracket, this is taken to be the start of
a TXR Lisp compound expression.

The TXR language has the unusual property that its syntactic elements, so-called directives, are Lisp com-
pound expressions. These expressions not only enclose syntax, but expressions which begin with certain
symbols de facto behave as tokens in a phrase structure grammar. For instance, the expression @ (col-
lect) begins a block which must be terminated by the expression @ (end), otherwise there is a syntax
error. The collect expression can contain arguments which modify the behavior of the construct, for
instance @ (collect :gap 0 :vars (a b)). In some ways, this situation might be compared to
HTML, in which an element such as <a> must be terminated by and can have attributes such as .

Compound expressions contain subexpressions which are other compound expressions or literal objects of
various kinds. Among these are: symbols, numbers, string literals, character literals, quasiliterals and regu-
lar expressions. These are described in the following sections. Additional kinds of literal objects exist,
which are discussed in the TXR LISP section of the manual.
Some examples of compound expressions are:

(banana)

(a b c (de f))

(a (b (cd (e)))

("apple" #\b #\space 3)

(a #/[a-z1*/ Db)

(_ ‘@file.txt?)
Symbols occurring in a compound expression follow a slightly more permissive lexical syntax than the
bident in the syntax @ {bident} introduced earlier. The / (slash) character may be part of an identi-
fier, or even constitute an entire identifier. In fact a symbol inside a directive is a 1ident. This is

described in the Symbol Tokens section under TXR LISP. A symbol must not be a number; tokens that
look like numbers are treated as numbers and not symbols.

6.15 Character Literals

Character literals are introduced by the #\ (hash-backslash) syntax, which is either followed by a character
name, the letter x followed by hex digits, the letter o followed by octal digits, or a single character. Valid
character names are:

nul linefeed return
alarm newline esc
backspace vtab space
tab page pnul

For instance #\esc denotes the escape character.
This convention for character literals is similar to that of the Scheme language. Note that #\1inefeed

and #\newline are the same character. The #\pnul character is specific to TXR and denotes the
U+DCO0O0 code in Unicode; the name stands for "pseudo-null”, which is related to its special function. For

Utility Commands 2021-07-12 25

TXR(1) TXR Programming Language TXR(1)

more information about this, see the section "Character Handling and International Characters".

6.16 String Literals

String literals are delimited by double quotes. A double quote within a string literal is encoded using \ "
and a backslash is encoded as \\. Backslash escapes like \n and \t are recognized, as are hexadecimal
escapes like \xFF or \xabc and octal escapes like \123. Ambiguity between an escape and subsequent
text can be resolved by adding a semicolon delimiter after the escape: "\xabc; d" is a string consisting of
the character U+0ABC followed by "d". The semicolon delimiter disappears. To write a literal semicolon
immediately after a hex or octal escape, write two semicolons, the first of which will be interpreted as a
delimiter. Thus, "\x21; ; " represents " !; ".

Note that the source code syntax of TXR string literals is specified in UTF-8, which is decoded into an
internal string representation consisting of code points. The numeric escape sequences are an abstract syn-
tax for specifying code points, not for specifying bytes to be inserted into the UTF-8 representation, even if
they lie in the 8-bit range. Bytes cannot be directly specified, other than literally. However, when a TXR
string object is encoded to UTF-8, every code point lying in the range U+DCO00 through U+DCFF is con-
verted to a single byte by taking the low-order eight bits of its value. By manipulating code points in this
special range, TXR programs can reproduce arbitrary byte sequences in text streams. Also note that the \u
escape sequence for specifying code points found in some languages is unnecessary and absent, since the
existing hexadecimal and octal escapes satisfy this requirement. More detailed information is given in the
earlier section Character Handling and International Characters.

If the line ends in the middle of a literal, it is an error, unless the last character is a backslash. This back-
slash is a special escape which does not denote a character; rather, it indicates that the string literal contin-
ues on the next line. The backslash is deleted, along with whitespace which immediately precedes it, as
well as leading whitespace in the following line. The escape sequence "\ " (backslash space) can be used
to encode a significant space.

Example:

"foo \
bar"

"foo \
\ bar"

"foo\ \
bar"

The first string literal is the string "foobar". The second two are "foo bar".

6.17 Word List Literals

A word list literal (WLL) provides a convenient way to write a list of strings when such a list can be given
as whitespace-delimited words.

There are two flavors of the WLL: the regular WLL which begins with #" (hash, double quote) and the
splicing list literal which begins with #*" (hash, star, double quote).

Both types are terminated by a double quote, which may be escaped as \" in order to include it as a char-
acter. All the escaping conventions used in string literals can be used in word literals.

Unlike in string literals, whitespace (tabs and spaces) is not significant in word literals: it separates words.
A whitespace character may be escaped with a backslash in order to include it as a literal character.

Utility Commands 2021-07-12 26

TXR(1)

TXR Programming Language TXR(1)

Just like in string literals, an unescaped newline character is not allowed. A newline preceded by a back-
slash is permitted. Such an escaped backslash, together with any leading and trailing unescaped whitespace,
is removed and replaced with a single space.

Example:

#"abc def ghi" --> notates ("abc" "def" "ghi")

#"abc def \
ghi" --> notates ("abc" "def" "ghi")

#"abc\ def ghi" --> notates ("abc def" "ghi")

#"abc\ def\ \
\ ghi" -—> notates ("abc def " " ghi")

A splicing word literal differs from a word literal in that it does not produce a list of string literals, but
rather it produces a sequence of string literals that is merged into the surrounding syntax. Thus, the follow-
ing two notations are equivalent:

(1 2 3 #*"abc def" 4 5 #"abc def")

(1 2 3 "abc" "def" 4 5 ("abc" "def"))

The regular WLL produced a single list object, but the splicing WLL expanded into multiple string literal
objects.

6.18 String Quasiliterals

Quasiliterals are similar to string literals, except that they may contain variable references denoted by the
usual @ syntax. The quasiliteral represents a string formed by substituting the values of those variables into
the literal template. If a is bound to "apple" and b to "banana", the quasiliteral *‘one @a and two
@{b} s represents the string "one apple and two bananas". A backquote escaped by a back-
slash represents itself. Unlike in directive syntax, two consecutive @ characters do not code for a literal @,
but cause a syntax error. The reason for this is that compounding of the @ syntax is meaningful. Instead,
there is a \ @ escape for encoding a literal @ character. Quasiliterals support the full output variable syntax.
Expressions within variable substitutions follow the evaluation rules of TXR Lisp. This hasn’t always been
the case: see the COMPATIBILITY section.

Quasiliterals can be split into multiple lines in the same way as ordinary string literals.

6.19 Quasiword List Literals

The quasiword list literals (QLLs) are to quasiliterals what WLLs are to ordinary literals. (See the above
section Word List Literals.)

A QLL combines the convenience of the WLL with the power of quasistrings.

Just as in the case of WLLs, there are two flavors of the QLL: the regular QLL which begins with # * (hash,
backquote) and the splicing QLL which begins with #* * (hash, star, backquote).

Both types are terminated by a backquote, which may be escaped as \ * in order to include it as a character.
All the escaping conventions used in quasiliterals can be used in QLLs.

Unlike in quasiliterals, whitespace (tabs and spaces) is not significant in QLLs: it separates words. A

Utility Commands 2021-07-12 27

TXR Programming Language TXR(1)

whitespace character may be escaped with a backslash in order to include it as a literal character.

A newline is not permitted unless escaped. An escaped newline works exactly the same way as it does in
WLLs.

Note that the delimiting into words is done before the variable substitution. If the variable a contains spa-
ces, then # *@a * nevertheless expands into a list of one item: the string derived from a.

Examples:
#'abc @a ghi' --> notates (‘abc' ‘@a‘ ‘ghi‘)

#abc @dQ@e@f \
ghi® -—> notates (‘abc‘ ‘@d@e@f‘ ‘ghi‘)

#'Qa\ @b Qc' ——-> notates (‘QRa @b ‘@cY)

A splicing QLL differs from an ordinary QLL in that it does not produce a list of quasiliterals, but rather it
produces a sequence of quasiliterals that is merged into the surrounding syntax.

6.20 Numbers

TXR supports integers and floating-point numbers.
An integer constant is made up of digits 0 through 9, optionally preceded by a + or — sign.
Examples:

123

-34

+0

-0

+234483527304983792384729384723234

An integer constant can also be specified in hexadecimal using the prefix #x followed by an optional sign,
followed by hexadecimal digits: 0 through 9 and the uppercase or lowercase letters A through F':

#xFF ;5 255
#x-ABC ;; —-2748

Similarly, octal numbers are supported with the prefix #o followed by octal digits:

#0777 ;; 511
and binary numbers can be written with a #b prefix:

#b1110 ;; 14
Note that the #b prefix is also used for buffer literals.
A floating-point constant is marked by the inclusion of a decimal point, the scientific E notation, or both. It
is an optional sign, followed by a mantissa consisting of digits, a decimal point, more digits, and then an
optional E notation consisting of the letter e or E, an optional + or — sign, and then digits indicating the

exponent value. In the mantissa, the digits are not optional. At least one digit must either precede the deci-
mal point or follow it. That is to say, a decimal point by itself is not a floating-point constant.

Utility Commands 2021-07-12 28

TXR(1) TXR Programming Language TXR(1)

Examples:

.123
123.
1E-3
20E40
.9E1
9.E19
-.5
+3E+3
1.E5

Examples which are not floating-point constant tokens:

. ;; dot token, not a number
123E ;; the symbol 123E

1.0E- ;; syntax error: invalid floating point constant
1.0E ;7 syntax error: invalid floating point constant
1.E ;7 syntax error: invalid floating point literal
.e ;7 syntax error: dot token followed by symbol

In TXR there is a special "dotdot" token consisting of two consecutive periods. An integer constant fol-
lowed immediately by dotdot is recognized as such; it is not treated as a floating constant followed by a dot.
That is to say, 123.. does not mean 123. . (floating point 123.0 value followed by dot token). It
means 123 .. (integer 123 followed by . . token).

Dialect Note: unlike in Common Lisp, 123. is not an integer, but the floating-point number 123. 0.

6.21 Comments
Comments of the form @; were introduced earlier. Inside compound expressions, another convention for
comments exists: Lisp comments, which are introduced by the ; (semicolon) character and span to the end
of the line.
Example:
Q(foo ; this is a comment
bar ; this is another comment
)
This is equivalent to @ (foo bar).
7 DIRECTIVES
7.1 Overview

When a TXR Lisp compound expression occurs in TXR preceded by a @, it is a directive.

Directives which are based on certain symbols are, additionally, involved in a phrase-structure syntax which
uses Lisp expressions as if they were tokens.

For instance, the directive

@ (collect)

Utility Commands 2021-07-12 29

TXR(1) TXR Programming Language TXR(1)

not only denotes a compound expression with the collect symbol in its head position, but it also intro-
duces a syntactic phrase which requires a matching @ (end) directive. In other words, @ (collect) is
not only an expression, but serves as a kind of token in a higher-level, phrase-structure grammar.

Effectively, collect is areserved symbol in the TXR language. A TXR program cannot use this symbol
as the name of a pattern function due to its role in the syntax. The symbol has no reserved role in TXR
Lisp.

Usually if this type of directive occurs alone in a line, not preceded or followed by other material, it is
involved in a "vertical" (or line-oriented) syntax.

If such a directive is embedded in a line (has preceding or trailing material) then it is in a horizontal syntac-
tic and semantic context (character-oriented).

There is an exception: the definition of a horizontal function looks like this:
@ (define name (arg))body material(@ (end)

Yet, this is considered one vertical item, which means that it does not match a line of data. (This is neces-
sary because all horizontal syntax matches something within a line of data, which is undesirable for defini-
tions.)

Many directives exhibit both horizontal and vertical syntax, with different but closely related semantics.
Some are vertical only, some are horizontal only.

A summary of the available directives follows:

@ (eof)
Explicitly match the end of file. Fails if unmatched data remains in the input stream.

@ (eol)
Explicitly match the end of line. Fails if the current position is not the end of a line. Also fails if no
data remains (there is no current line).

@ (next)
Continue matching in another file or data source.

@ (block)
Groups together a sequence of directives into a logical name block, which can be explicitly termi-
nated from within by using the @ (accept) and @ (fail) directives. Blocks are described in
the section Blocks below.

@ (skip)
Treat the remaining query as a subquery unit, and search the lines (or characters) of the input file
until that subquery matches somewhere. A skip is also an anonymous block.

@ (trailer)
Treat the remaining query or subquery as a match for a trailing context. That is to say, if the
remainder matches, the data position is not advanced.

Utility Commands 2021-07-12 30

TXR(1) TXR Programming Language TXR(1)

@ (freeform)
Treat the remainder of the input as one big string, and apply the following query line to that string.
The newline characters (or custom separators) appear explicitly in that string.

@ (fuzz)
The fuzz directive, inspired by the patch utility, specifies a partial match for some lines.

@ (line) and @ (chr)
These directives match a variable or expression against the current line number or character posi-
tion.

@ (name)
Match a variable against the name of the current data source.

@ (data)
Match a variable against the remaining data (a lazy list of strings).

@ (some)
Multiple clauses are each applied to the same input. Succeeds if at least one of the clauses matches
the input. The bindings established by earlier successful clauses are visible to the later clauses.

@(all)
Multiple clauses are applied to the same input. Succeeds if and only if each one of the clauses
matches. The clauses are applied in sequence, and evaluation stops on the first failure. The bind-
ings established by earlier successful clauses are visible to the later clauses.

@ (none)
Multiple clauses are applied to the same input. Succeeds if and only if none of them match. The
clauses are applied in sequence, and evaluation stops on the first success. No bindings are ever
produced by this construct.

@ (maybe)
Multiple clauses are applied to the same input. No failure occurs if none of them match. The bind-
ings established by earlier successful clauses are visible to the later clauses.

@ (cases)
Multiple clauses are applied to the same input. Evaluation stops on the first successful clause.

@ (require)
The require directive is similar to the do directive in that it evaluates one or more TXR Lisp
expressions. If the result of the rightmost expression is nil, then require triggers a match fail-
ure. See the TXR LISP section far below.

RQ(if),Q@(elif),and @ (else)
The if directive with optional e11if and else clauses allows one of multiple bodies of pattern-
matching directives to be conditionally selected by testing the values of Lisp expressions. It is also
available inside @ (output) for conditionally selecting output clauses.

Utility Commands 2021-07-12 31

TXR(1)

TXR Programming Language TXR(1)

@ (choose)
Multiple clauses are applied to the same input. The one whose effect persists is the one which
maximizes or minimizes the length of a particular variable.

@ (empty)
The @ (empty) directive matches the empty string. It is useful in certain situations, such as
expressing an empty match in a directive that doesn’t accept an empty clause. The @ (empty)
syntax has another meaning in @ (output) clauses, in conjunction with @ (repeat).

Q@ (define name (args ...))
Introduces a function. Functions are described in the Functions section below.

@(call expr arg*)
Performs function indirection. Evaluates expr, which must produce a symbol that names a pat-
tern function. Then that pattern function is invoked.

@ (gather)
Searches text for matches for multiple clauses which may occur in arbitrary order. For conve-
nience, lines of the first clause are treated as separate clauses.

@(collect)
Search the data for multiple matches of a clause. Collect the bindings in the clause into lists, which
are output as array variables. The @ (collect) directive is line-oriented. It works with a multi-
line pattern and scans line by line. A similar directive called @ (col1l) works within one line.

A collect is an anonymous block.

@ (and)
Separator of clauses for @ (some), @ (all), @ (none), @ (maybe) and @ (cases). Equiva-
lent to @ (or). The choice is stylistic.

@ (or) Separator of clauses for @ (some), @ (all), @ (none), @ (maybe) and @ (cases). Equiva-
lent to @ (and). The choice is stylistic.

@ (end)
Required terminator for @ (some), Q@(all), Q@ (none), @ (maybe), Q@ (cases), @(if),
@(collect), @(coll), @ (output), @ (repeat), @(rep), @ (try), @(block) and
@ (define).

Q@ (fail)
Terminate the processing of a block, as if it were a failed match. Blocks are described in the sec-
tion Blocks below.

@ (accept)

Terminate the processing of a block, as if it were a successful match. What bindings emerge may
depend on the kind of block: collect has special semantics. Blocks are described in the section
Blocks below.

Utility Commands 2021-07-12 32

TXR(1)

TXR Programming Language TXR(1)

@ (try)
Indicates the start of a try block, which is related to exception handling, described in the Excep-
tions section below.

@ (catch) and @ (finally)
Special clauses within @ (try). See Exceptions below.

@ (defex) and @ (throw)
Define custom exception types; throw an exception. See Exceptions below.

@ (assert)
The assert directive requires the following material to match, otherwise it throws an exception.
It is useful for catching mistakes or omissions in parts of a query that are surefire matches.

@ (flatten)
Normalizes a set of specified variables to one-dimensional lists. Those variables which have a
scalar value are reduced to lists of that value. Those which are lists of lists (to an arbitrary level of
nesting) are converted to flat lists of their leaf values.

@ (merge)
Binds a new variable which is the result of merging two or more other variables. Merging has
somewhat complicated semantics.

@ (cat)
Decimates a list (any number of dimensions) to a string, by catenating its constituent strings, with
an optional separator string between all of the values.

@ (bind)
Binds one or more variables against a value using a structural pattern match. A limited form of
unification takes place which can cause a match to fail.

@ (set)
Destructively assigns one or more existing variables using a structural pattern, using syntax similar
to bind. Assignment to unbound variables triggers an error.

@ (rebind)
Evaluates an expression in the current binding environment, and then creates new bindings for the
variables in the structural pattern. Useful for temporarily overriding variable values in a scope.

@ (forget)
Removes variable bindings.

@ (local)
Synonym of @ (forget).

@ (output)
A directive which encloses an output clause in the query. An output section does not match text,
but produces text. The directives above are not understood in an output clause.

Utility Commands 2021-07-12 33

TXR(1) TXR Programming Language TXR(1)

@ (repeat)
A directive understood within an @ (output) section, for repeating multiline text, with succes-
sive substitutions pulled from lists. The directive @ (rep) produces iteration over lists horizon-
tally within one line. These directives have a different meaning in matching clauses, providing a
shorthand notation for @ (collect :vars nil) and @ (coll :vars nil), respectively.

Q@ (deffilter)
The deffilter directive is used for defining named filters, which are useful for filtering vari-
able substitutions in output blocks. Filters are useful when data must be translated between differ-
ent representations that have different special characters or other syntax, requiring escaping or
similar treatment. Note that it is also possible to use a function as a filter. See Function Filters
below.

Named filters are stored in the hash table held in the Lisp special variable *filters*.

@(filter)
The filter directive passes one or more variables through a given filter or chain or filters,
updating them with the filtered values.

@(load) and @ (include)
The load and include directives allow TXR programs to be modularized. They bring in code
from a file, in two different ways.

@ (do) The do directive is used to evaluate TXR Lisp expressions, discarding their result values. See the
TXR LISP section far below.

@ (mdo)
The mdo (macro do) directive evaluates TXR Lisp expressions immediately, during the parsing of
the TXR syntax in which it occurs.

@ (in—-package)
The in-package directive is used to switch to a different symbol package. It mirrors the TXR
Lisp macro of the same name.

7.2 Subexpression Evaluation

Some directives contain subexpressions which are evaluated. Two distinct styles of evaluations occur in
TXR: bind expressions and Lisp expressions. Which semantics applies to an expression depends on the
syntactic context in which it occurs: which position in which directive.

The evaluation of TXR Lisp expressions is described in the TXR LISP section of the manual.

Bind expressions are so named because they occur in the @ (bind) directive. TXR pattern function invo-
cations also treat argument expressions as bind expressions.

The @ (rebind), @ (set), @ (merge), and @ (deffilter) directives also use bind expression evalu-
ation. Bind expression evaluation also occurs in the argument position of the :t1list keyword in the
@ (next) directive.

Unlike Lisp expressions, bind expressions do not support operators. If a bind expression is a nested list

structure, it is a template denoting that structure. Any symbol in any position of that structure is interpreted
as a variable. When the bind expression is evaluated, those corresponding positions in the template are

Utility Commands 2021-07-12 34

TXR(1)

TXR Programming Language

replaced by the values of the variables.

TXR(1)

Anywhere where a variable can appear in a bind expression’s nested list structure, a Lisp expression can
appear preceded by the @ character. That Lisp expression is evaluated and its value is substituted into the
bind expression’s template.

Moreover, a Lisp expression preceded by @ can be used as an entire bind expression. The value of that Lisp
expression is then taken as the bind expression value.

Any object in a bind expression which is not a nested list structure containing Lisp expressions or variables
denotes itself literally.

Examples:

In the following examples, the variables a and b are assumed to have the string values "foo" and
"bar", respectively.

The —> notation indicates the value of each expression.

a ->
(a b) ->
((a) ((b) b)) —>
(list a b) >
@(list a b) ->
(a @[b 1..:1) —>
(a @Q(+ 2 2)) ->
#(a b) ->
[a b] ->

"foo"

("foo" "bar")

(("foo") (("bar") "bar"))

error: unbound variable list
("foo" "bar") ;; Lisp expression
("foo™ "ar") ;7 Lisp eval of [b
("foo" 4) ;; Lisp eval of (+
(a b) ;; Vector literal,
error: unbound variable dwim

1..:]
2 2)
not list.

The last example above [a Db] is a notation equivalent to (dwim a b) and so follows similarly
to the example involving 1ist.

7.3 Input Scanning and Data Manipulation

7.3.1 The next directive

The next directive indicates that the remaining directives in the current block are to be applied against a

new input source.

It can only occur by itself as the only element in a query line, and takes various arguments, according to

these possibilities:

source)
source
rargs)
renv)
:list lisp-expr)
:tlist bind-expr)
:string lisp-expr)
:var var)

nil)

:nothrow)

The lone @ (next) without arguments specifies that subsequent directives will match inside the next file in
the argument list which was passed to TXR on the command line.

Utility Commands

2021-07-12

35

TXR(1) TXR Programming Language TXR(1)

If source is given, it must be a TXR Lisp expression which denotes an input source. Its value may be a
string or an input stream. For instance, if variable A contains the text "data", then @ (next A) means
switch to the file called "data", and @ (next “QA.txt ‘) means to switch to the file "data.txt".
The directive @ (next (open-command ‘git log‘')) switches to the input stream connected to the
output of the git log command.

If the input source cannot be opened for whatever reason, TXR throws an exception (see Exceptions
below). An unhandled exception will terminate the program. Often, such a drastic measure is inconvenient;
if @ (next) is invoked with the : nothrow keyword, then if the input source cannot be opened, the situa-
tion is treated as a simple match failure.

The variant @ (next :args) means that the remaining command-line arguments are to be treated as a
data source. For this purpose, each argument is considered to be a line of text. The argument list does
include that argument which specifies the file that is currently being processed or was most recently pro-
cessed. As the arguments are matched, they are consumed. This means that if a @ (next) directive with-
out arguments is executed in the scope of @ (next :args), it opens the file named by the first uncon-
sumed argument.

To process arguments, and then continue with the original file and argument list, wrap the argument pro-
cessing in a @ (block). When the block terminates, the input source and argument list are restored to
what they were before the block.

The variant @ (next :env) means that the list of process environment variables is treated as a source of
data. It looks like a text file stream consisting of lines of the form "name=value". If this feature is not
available on a given platform, an exception is thrown.

The syntax @ (next :list lisp-expr) treats TXR Lisp expression 1isp—expr as a source of
text. The value of 1isp-expr is flattened to a simple list in a way similar to the @ (flatten) directive.
The resulting list is treated as if it were the lines of a text file: each element of the list must be a string,
which represents a line. If the strings happen contain embedded newline characters, they are a visible con-
stituent of the line, and do not act as line separators.

The syntax @ (next :tlist bind-expr) issimilarto @ (next :list ...) exceptthat bind-
expr is not a TXR Lisp expression, but a TXR bind expression.

The syntax @ (next :var var) requires var to be a previously bound variable. The value of the vari-
able is retrieved and treated like a list, in the same manner as under @ (next :1list ...). Note that
@ (next :var x) is not always the same as @ (next :tlist x), because :var x strictly requires
x to be a TXR variable, whereas the x in :t1ist x is an expression which can potentially refer to Lisp
variable.

The syntax @ (next :string lisp-expr) treats expression 1isp—expr as a source of text. The
value of the expression must be a string. Newlines in the string are interpreted as line terminators.

A string which is not terminated by a newline is tolerated, so that:

@ (next :string "abc")
Qa

binds a to "abc". Likewise, this is also the case with input files and other streams whose last line is not
terminated by a newline.

However, watch out for empty strings, which are analogous to a correctly formed empty file which contains
no lines:

Utility Commands 2021-07-12 36

TXR(1)

TXR Programming Language TXR(1)
Q@ (next :string "")
Ca
This will not bind a to " "; it is a matching failure. The behavior of : 1ist is different. The query
@ (next :list "")
@a
binds a to "". The reason is that under : 1ist the string "" is flattened to the list ("") which is not an

empty input stream, but a stream consisting of one empty line.

The @ (next nil) variant indicates that the following subquery is applied to empty data, and the list of
data sources from the command line is considered empty. This directive is useful in front of TXR code
which doesn’t process data sources from the command line, but takes command-line arguments. The
@ (next nil) incantation absolutely prevents TXR from trying to open the first command-line argument
as a data source.

Note that the @ (next) directive only redirects the source of input over the scope of subquery in which the
that directive appears. For example, the following query looks for the line starting with "xyz" at the top
of the file "foo.txt", within a some directive. After the @ (end) which terminates the @ (some), the
"abc" is matched in the previous input stream which was in effect before the @ (next) directive:

@ (some)

@ (next "foo.txt")
xyz@suffix

@ (end)

abc

However, if the @ (some) subquery successfully matched "xyz@suffix" within the file foo.text,
there is now a binding for the suf fix variable, which is visible to the remainder of the entire query. The
variable bindings survive beyond the clause, but the data stream does not.

7.3.2 The skip directive

The skip directive considers the remainder of the query as a search pattern. The remainder is no longer
required to strictly match at the current line in the current input stream. Rather, the current stream is
searched, starting with the current line, for the first line where the entire remainder of the query will suc-
cessfully match. If no such line is found, the skip directive fails. If a matching position is found, the
remainder of the query is processed from that point.

The remainder of the query can itself contain skip directives. Each such directive performs a recursive
subsearch.

Skip comes in vertical and horizontal flavors. For instance, skip and match the last line:
@ (skip)
@last
@ (eof)

Skip and match the last character of the line:

@ (skip)@{last 1}Q@(eol)

The skip directive has two optional arguments, which are evaluated as TXR Lisp expressions. If the first
argument evaluates to an integer, its value limits the range of lines scanned for a match. Judicious use of

Utility Commands 2021-07-12 37

TXR(1)

TXR Programming Language TXR(1)

this feature can improve the performance of queries.
Example: scan until "size: @SIZE" matches, which must happen within the next 15 lines:

@ (skip 15)
size: QSIZE

Without the range limitation skip will keep searching until it consumes the entire input source. In a hori-
zontal skip, the range-limiting numeric argument is expressed in characters, so that

abc@ (skip 5)def

means: there must be a match for "abc™" at the start of the line, and then within the next five characters,
there must be a match for "def™".

Sometimes a skip is nested within a collect, or following another skip. For instance, consider:

@(collect)

begin @BEG_SYMBOL
@ (skip)

end @BEG_SYMBOL

@ (end)

The above collect iterates over the entire input. But, potentially, so does the embedded skip. Suppose
that "begin x" is matched, but the data has no matching "end x". The skip will search in vain all the
way to the end of the data, and then the collect will try another iteration back at the beginning, just one line
down from the original starting point. If it is a reasonable expectation that an end x occurs 15 lines of a
"begin x", this can be specified instead:

@(collect)

begin @BEG_SYMBOL
@ (skip 15)

end @BEG_SYMBOL

@ (end)

If the symbol nil is used in place of a number, it means to scan an unlimited range of lines; thus, @ (skip
nil) is equivalent to @ (skip).

If the symbol :greedy is used, it changes the semantics of the skip to longest match semantics. For
instance, match the last three space-separated tokens of the line:

@ (skip :greedy) @a @b @Qc
Without : greedy, the variable @c may match multiple tokens, and end up with spaces in it, because noth-
ing follows @c and so it matches from any position which follows a space to the end of the line. Also note
the space in front of @a. Without this space, @a will get an empty string.

A line-oriented example of greedy skip: match the last line without using @ (eof):

Q (skip :greedy)
@last_line

There may be a second numeric argument. This specifies a minimum number of lines to skip before looking
for a match. For instance, skip 15 lines and then search indefinitely for begin

Utility Commands 2021-07-12 38

TXR(1) TXR Programming Language TXR(1)
@(skip nil 15)
begin @BEG_SYMBOL

The two arguments may be used together. For instance, the following matches if and only if the 15th line of
input starts with begin :

@(skip 1 15)
begin @BEG_SYMBOL

Essentially, @ (skip 1 n) means "hard skip by n lines". @ (skip 1 0) is the same as @ (skip 1),
which is a noop, because it means: "the remainder of the query must match starting on the next line", or,

more briefly, "skip exactly zero lines", which is the behavior if the skip directive is omitted altogether.

Here is one trick for grabbing the fourth line from the bottom of the input:

@ (skip)
@fourth_from_bottom
@(skip 1 3)

@ (eof)

Or using greedy skip:

@ (skip :greedy)
@fourth_from_bottom
@(skip 1 3)

Non-greedy skip with the @ (eof) directive has a slight advantage because the greedy skip will keep scan-
ning even though it has found the correct match, then backtrack to the last good match once it runs out of
data. The regular skip with explicit @ (eof) will stop when the @ (eof) matches.

7.3.3 Reducing Backtracking with Blocks

The skip directive can consume considerable CPU time when multiple skips are nested. Consider:
@ (skip)
(skip)

A
@
B
@ (skip)

C

This is actually nesting: the second and third skips occur within the body of the first one, and thus this cre-
ates nested iteration. TXR is searching for the combination of skips which match the pattern of lines A, B
and C with backtracking behavior. The outermost skip marches through the data until it finds A followed by
a pattern match for the second skip. The second skip iterates to find B followed by the third skip, and the
third skip iterates to find C. If A and B are only one line each, then this is reasonably fast. But suppose
there are many lines matching A and B, giving rise to a large number of combinations of skips which match
A and B, and yet do not find a match for C, triggering backtracking. The nested stepping which tries the
combinations of A and B can give rise to a considerable running time.

One way to deal with the problem is to unravel the nesting with the help of blocks. For example:

Q@ (block)
@ (skip)
A

Utility Commands 2021-07-12 39

TXR(1)

TXR Programming Language TXR(1)

Now the scope of each skip is just the remainder of the block in which it occurs. The first skip finds A, and
then the block ends. Control passes to the next block, and backtracking will not take place to a block which
completed (unless all these blocks are enclosed in some larger construct which backtracks, causing the
blocks to be re-executed.

This rewrite is not equivalent, and cannot be used for instance in backreferencing situations such as:

@;

@; Find three lines anywhere in the input which are identical.
@;

@ (skip)

@line

@ (skip)

@line

@ (skip)

@line

This example depends on the nested search-within-search semantics.

7.3.4 The trailer directive

The trailer directive introduces a trailing portion of a query or subquery which matches input material
normally, but in the event of a successful match, does not advance the current position. This can be used,
for instance, to cause @ (collect) to match partially overlapping regions.

Trailer can be used in vertical context:

@ (trailer)
directives

or horizontal:
@ (trailer) directives

A vertical trailer prevents the vertical input position from advancing as it is matched by direc-
tives, whereas a horizontal trailer prevents the horizontal position from advancing. In other words,
trailer performs matching without consuming the input, providing a lookahead mechanism.

Example:

@(collect)
@line

@ (trailer)
@ (skip)
@line

@ (end)

Utility Commands 2021-07-12 40

TXR(1) TXR Programming Language TXR(1)

This script collects each line which has a duplicate somewhere later in the input. Without the
@ (trailer) directive, this does not work properly for inputs like:

111
222
111
222

Without @ (trailer), the first duplicate pair constitutes a match which spans over the 222. After that
pair is found, the matching continues after the second 111.

With the @ (trailer) directive in place, the collect body, on each iteration, only consumes the lines
matched prior to @ (trailer).

7.3.5 The freeform directive

The freeform directive provides a useful alternative to TXR’s line-oriented matching discipline. The
freeform directive treats all remaining input from the current input source as one big line. The query line
which immediately follows freeform is applied to that line.

The syntax variations are:

Q@ (freeform)
query line

Q@ (freeform number)
query line

Q@ (freeform string)
query line

Q@ (freeform number string)
query line

where number and string denote TXR Lisp expressions which evaluate to an integer or string value,
respectively.

If number and string are both present, they may be given in either order.

If the number argument is given, its value limits the range of lines which are combined together. For
instance @ (freeform 5) means to only consider the next five lines to to be one big line. Without this
argument, freeform is "bottomless". It can match the entire file, which creates the risk of allocating a
large amount of memory.

If the string argument is given, it specifies a custom line terminator. The default terminator is "\n".
The terminator does not have to be one character long.

Freeform does not convert the entire remainder of the input into one big line all at once, but does so in a
dynamic, lazy fashion, which takes place as the data is accessed. So at any time, only some prefix of the
data exists as a flat line in which newlines are replaced by the terminator string, and the remainder of the
data still remains as a list of lines.

After the subquery is applied to the virtual line, the unmatched remainder of that line is broken up into mul-

tiple lines again, by looking for and removing all occurrences of the terminator string within the flattened
portion.

Utility Commands 2021-07-12 41

TXR(1) TXR Programming Language TXR(1)

Care must be taken if the terminator is other than the default "\n". All occurrences of the terminator
string are treated as line terminators in the flattened portion of the data, so extra line breaks may be intro-
duced. Likewise, in the yet unflattened portion, no breaking takes place, even if the text contains occur-
rences of the terminator string. The extent of data which is flattened, and the amount of it which remains,
depends entirely on the query line underneath @ (flatten).

In the following example, lines of data are flattened using $ as the line terminator.

code: Q@ (freeform "$")
Qas$@b:
Qc
@d

data: 1
2:3
4

output (-B):
a="1"
p="2"
c="3"
d="an

The data is turned into the virtual line 1$2:3$4$. The @a$@b: subquery matches the 1$2: portion,
binding a to "1", and b to "2". The remaining portion 3$4$ is then split into separate lines again
according to the line terminator $1i:

3
4

Thus the remainder of the query

Qc
@d

faces these lines, binding ¢ to 3 and d to 4. Note that since the data does not contain dollar signs, there is
no ambiguity; the meaning may be understood in terms of the entire data being flattened and split again.

In the following example, freeform is used to solve a tokenizing problem. The Unix password file has
fields separated by colons. Some fields may be empty. Using freeform, we can join the password file using
": " as a terminator. By restricting freeform to one line, we can obtain each line of the password file with a
terminating " : ", allowing for a simple tokenization, because now the fields are colon-terminated rather
than colon-separated.

Example:
@ (next "/etc/passwd")
@(collect)
Q(freeform 1 ":")
@(coll)@{token /[":1*/}:Q@(end)
@ (end)

Utility Commands 2021-07-12 42

TXR(1)

TXR Programming Language TXR(1)

7.3.6 The fuzz directive

The fuzz directive allows for an imperfect match spanning a set number of lines. It takes two arguments,
both of which are TXR Lisp expressions that should evaluate to integers:

Q@ (fuzz m n)

This expresses that over the next n query lines, the matching strictness is relaxed a little bit. Only m out of
those n lines have to match. Afterward, the rest of the query follows normal, strict processing.

In the degenerate situation where there are fewer than n query lines following the fuzz directive, then m of
them must succeed anyway. (If there are fewer than m, then this is impossible.)

7.3.7 The 1ine and chr directives

The 1ine and chr directives perform binding between the current input line number or character position
within a line, against an expression or variable:

@ (line 42)
@ (line x)
abc@ (chr 3)def@ (chr y)

The directive @ (1ine 42) means "match the current input line number against the integer 42". If the cur-
rent line is 42, then the directive matches, otherwise it fails. 1ine is a vertical directive which doesn’t con-
sume a line of input. Thus, the following matches at the beginning of an input stream, and x ends up bound
to the first line of input:

@(line 1)
@(line 1)
@(line 1)
@x

The directive @ (1ine x) binds variable x to the current input line number, if x is an unbound variable. If
x is already bound, then the value of x must match the current line number, otherwise the directive fails.

The chr directive is similar to 1ine except that it’s a horizontal directive, and matches the character posi-
tion rather than the line position. Character positions are measured from zero, rather than one. chr does
not consume a character. Hence the two occurrences of chr in the following example both match, and x
takes the entire line of input:

@ (chr 0)@Q@(chr 0)@x

The argument of 1ine or chr may be an @-delimited Lisp expression. This is useful for matching com-
puted lines or character positions:

@(line Q(+ a (* b c)))

7.3.8 The name directive

The name directive performs a binding between the name of the current data source and a variable or bind
expression:

@ (name na)
@ (name "data.txt")

Utility Commands 2021-07-12 43

TXR(1) TXR Programming Language TXR(1)

If na is an unbound variable, it is bound and takes on the name of the data source, such as a file name. If
na is bound, then it has to match the name of the data source, otherwise the directive fails.

The directive @ (name "data.txt") fails unless the current data source has that name.

7.3.9 The data directive

The data directive performs a binding between the unmatched data at the current position, and and a vari-
able or bind expression. The unmatched data takes the form of a list of strings:

@ (data d)

The binding is performed on object equality. If d is already bound, a matching failure occurs unless d con-
tains the current unmatched data.

Matching the current data has various uses.

For instance, two branches of pattern matching can, at some point, bind the current data into different vari-
ables. When those paths join, the variables can be bound together to create the assertion that the current
data had been the same at those points:

@(all)

@ (skip)
foo

@ (skip)
bar

@ (data x)
@ (or)

@ (skip)
XYZZY

@ (skip)
bar

@ (data vy)
@ (end)

@ (require (eq x y))

Here, two branches of the @ (al1l) match some material which ends in the line bar. However, it is possi-
ble that this is a different line. The data directives are used to create an assertion that the data regions
matched by the two branches are identical. That is to say, the unmatched data x captured after the first bar
and the unmatched data y captured after the second bar must be the same object in order for @ (require
(eq x y)) tosucceed, which implies that the same bar was matched in both branches of the @ (a11l).

Another use of data is simply to gain access to the trailing remainder of the unmatched input in order to
print it, or do some special processing on it.

The tprint Lisp function is useful for printing the unmatched data as newline-terminated lines:

@ (data remainder)
@(do (tprint remainder))

7.3.10 The some, all, none, maybe, cases and choose directives

These directives, called the parallel directives, combine multiple subqueries, which are applied at the same
input position, rather than to consecutive input.

Utility Commands 2021-07-12 44

TXR(1) TXR Programming Language TXR(1)

They come in vertical (line mode) and horizontal (character mode) flavors.

In horizontal mode, the current position is understood to be a character position in the line being processed.
The clauses advance this character position by moving it to the right. In vertical mode, the current position
is understood to be a line of text within the stream. A clause advances the position by some whole number
of lines.

The syntax of these parallel directives follows this example:

@ (some)
subqueryl

@ (and)
subquery?2

@ (and)
subquery3

@ (end)
And in horizontal mode:
@ (some) subqueryl...@ (and) subquery2...@ (and) subquery3...@Q (end)

Long horizontal lines can be broken up with line continuations, allowing the above example to be written
like this, which is considered a single logical line:

@ (some) @\
subqueryl...@\
@ (and) @\
subquery2...@\
@ (and) @\
subquery3...@Q\
@ (end)

The @ (some), @(all), @ (none), @ (maybe), @ (cases) or @ (choose) must be followed by at
least one subquery clause, and be terminated by @ (end) . If there are two or more subqueries, these addi-
tional clauses are indicated by @ (and) or @ (or), which are interchangeable. The separator and termina-
tor directives also must appear as the only element in a query line.

The choose directive requires keyword arguments. See below.

The syntax supports arbitrary nesting. For example:

QUERY : SYNTAX TREE:
@(all) all —+
@ (skip) +- skip -+

Utility Commands 2021-07-12 45

TXR(1)

TXR Programming Language TXR(1)

@ (some) +- some —+

|
it | | +— TEXT
@ (and) | | +- and
@ (none) | | +- none -+
was | | | +— TEXT
Q (end) | | | +- end
@ (end) | | +- end
a dark | +— TEXT
@ (end) *— end

nesting can be indicated using whitespace between @ and the directive expression. Thus, the above is an
@(all) query containing a @ (skip) clause which applies to a @ (some) that is followed by the text line
"a dark". The @ (some) clause combines the text line "it", and a @ (none) clause which contains
just one clause consisting of the line "was".

The semantics of the parallel directives is:

@(all)
Each of the clauses is matched at the current position. If any of the clauses fails to match, the
directive fails (and thus does not produce any variable bindings). Clauses following the failed
directive are not evaluated. Bindings extracted by a successful clause are visible to the clauses
which follow, and if the directive succeeds, all of the combined bindings emerge.

@(some [:resolve (var ...) 1)
Each of the clauses is matched at the current position. If any of the clauses succeed, the directive
succeeds, retaining the bindings accumulated by the successfully matching clauses. Evaluation
does not stop on the first successful clause. Bindings extracted by a successful clause are visible to
the clauses which follow.

The : resolve parameter is for situations when the @ (some) directive has multiple clauses that
need to bind some common variables to different values: for instance, output parameters in func-
tions. Resolve takes a list of variable name symbols as an argument. This is called the resolve set.
If the clauses of @ (some) bind variables in the resolve set, those bindings are not visible to later
clauses. However, those bindings do emerge out of the @ (some) directive as a whole. This cre-
ates a conflict: what if two or more clauses introduce different bindings for a variable in the
resolve set? This is why it is called the resolve set: conflicts for variables in the resolve set are
automatically resolved in favor of later directives.

Example:

@ (some :resolve (x))
@ (bind a "a")

@ (bind x "x1")

@ (or)

@ (bind b "b")

@ (bind x "x2")

@ (end)

Here, the two clauses both introduce a binding for x. Without the : resolve parameter, this
would mean that the second clause fails, because x comes in with the value "x1", which does not
bind with "x2". But because x is placed into the resolve set, the second clause does not see the
"x1" binding. Both clauses establish their bindings independently creating a conflict over x. The
conflict is resolved in favor of the second clause, and so the bindings which emerge from the direc-
tive are:

Utility Commands 2021-07-12 46

TXR(1) TXR Programming Language TXR(1)

a="ag"
b="b"
x="x2"

@ (none)
Each of the clauses is matched at the current position. The directive succeeds only if all of the
clauses fail. If any clause succeeds, the directive fails, and subsequent clauses are not evaluated.
Thus, this directive never produces variable bindings, only matching success or failure.

@ (maybe)
Each of the clauses is matched at the current position. The directive always succeeds, even if all
of the clauses fail. Whatever bindings are found in any of the clauses are retained. Bindings
extracted by any successful clause are visible to the clauses which follow.

@ (cases)
Each of the clauses is matched at the current position. The clauses are matched, in order, at the
current position. If any clause matches, the matching stops and the bindings collected from that
clause are retained. Any remaining clauses after that one are not processed. If no clause matches,
the directive fails, and produces no bindings.

@ (choose [:longest var | :shortest var])
Each of the clauses is matched at the current position in order. In this construct, bindings estab-
lished by an earlier clause are not visible to later clauses. Although any or all of the clauses can
potentially match, the clause which succeeds is the one which maximizes or minimizes the length
of the text bound to the specified variable. The other clauses have no effect.

For all of the parallel directives other than @ (none) and @ (choose), the query advances the
input position by the greatest number of lines that match in any of the successfully matching sub-
clauses that are evaluated. The @ (none) directive does not advance the input position.

For instance if there are two subclauses, and one of them matches three lines, but the other one
matches five lines, then the overall clause is considered to have made a five line match at its posi-
tion. If more directives follow, they begin matching five lines down from that position.

7.3.11 The require directive
The syntax of @ (require) is:
Q@ (require lisp-expression)
The require directive evaluates a TXR Lisp expression. (See TXR LISP far below.) If the expression
yields a true value, then it succeeds, and matching continues with the directives which follow. Otherwise

the directive fails.

In the context of the require directive, the expression should not be introduced by the @ symbol; it is
expected to be a Lisp expression.

Example:
@; require that 4 is greater than 3
@; This succeeds; therefore, @a is processed

@ (require (> (+ 2 2) 3))
Qa

Utility Commands 2021-07-12 47

TXR(1)

TXR Programming Language TXR(1)

7.3.12 The if directive

The if directive allows for conditional selection of pattern-matching clauses, based on the Boolean results
of Lisp expressions.

A variant of the if directive is also available for use inside an output clauses, where it similarly allows
for the conditional selection of output clauses.

The syntax of the if directive can be exemplified as follows:

Q(if lisp-expr)

Q(elif Iisp-expr)

Q(elif Iisp-expr)

@ (else)

@ (end)

The @ (elif) and @ (else) clauses are all optional. If @ (else) is present, it must be last, before
@ (end), after any @ (e1lif) clauses. Any of the clauses may be empty.

Example:

@Q(if (> (length str) 42))
foo: @a @b

Q(else)

{@c}

@ (end)

In this example, if the length of the variable str is greater than 42, then matching continues with
"foo: Q@a Db",otherwise it proceeds with {@c}.

More precisely, how the if directive works is as follows. The Lisp expressions are evaluated in order, start-
ing with the if expression, then the elif expressions if any are present. If any Lisp expression yields a
true result (any value other than nil) then evaluation of Lisp expressions stops. The corresponding clause
of that Lisp expression is selected and pattern matching continues with that clause. The result of that clause
(its success or failure, and any newly bound variables) is then taken as the result of the i £ directive. If none
of the Lisp expressions yield true, and an else clause is present, then that clause is processed and its result
determines the result of the i f directive. If none of the Lisp expressions yield true, and there is no else
clause, then the if directive is deemed to have trivially succeeded, allowing matching to continue with
whatever directive follows it.

7.3.13 The Lisp if versus TXR if

The @ (output) directive supports the embedding of Lisp expressions, whose values are interpolated into
the output. In particular, Lisp if expressions are useful. For instance @ (1f expr "A" "B")

Utility Commands 2021-07-12 48

TXR(1) TXR Programming Language TXR(1)

reproduces A if expr yields a true value, otherwise B. Yet the @ (1f) directive is also supported in
@ (output). How the apparent conflict between the two is resolved is that the two take different numbers
of arguments. An @ (1f) which has no arguments at all is a syntax error. One that has one argument is the
head of the if directive syntax which must be terminated by @ (end) and which takes the optional
@(elif) and @ (else) clauses. An @ (if) which has two or more arguments is parsed as a self-con-
tained Lisp expression.

7.3.14 The gather directive

Sometimes text is structured as items that can appear in an arbitrary order. When multiple matches need to
be extracted, there is a combinatorial explosion of possible orders, making it impractical to write pattern
matches for all the possible orders.

The gather directive is for these situations. It specifies multiple clauses which all have to match some-
where in the data, but in any order.

For further convenience, the lines of the first clause of the gather directive are implicitly treated as sepa-
rate clauses.

The syntax follows this pattern:
@ (gather)

one-line—-queryl
one-line—-query?2

one-line—-queryN
@ (and)

multi

line

queryl

@ (and)
multi
line
query?2

@ (end)

The multiline clauses are optional. The gather directive takes keyword parameters, see below.

7.3.15 The until/ last clause in gather

Similarly to collect, gather has an optional until/last clause:
@ (gather)
@ (until)

@ (end)

Utility Commands 2021-07-12 49

TXR(1) TXR Programming Language TXR(1)

How gather works is that the text is searched for matches for the single-line and multiline queries. The
clauses are applied in the order in which they appear. Whenever one of the clauses matches, any bindings it
produces are retained and it is removed from further consideration. Multiple clauses can match at the same
text position. The position advances by the longest match from among the clauses which matched. If no
clauses match, the position advances by one line. The search stops when all clauses are eliminated, and
then the cumulative bindings are produced. If the data runs out, but unmatched clauses remain, the direc-
tive fails.

Example: extract several environment variables, which do not appear in a particular order:

@ (next :env)
@ (gather)
USER=WQUSER
HOME=@HOME
SHELL=Q@SHELL
@ (end)

If the until or last clause is present and a match occurs, then the matches from the other clauses are
discarded and the gather terminates. The difference between until/last is that any bindings bindings
established in last are retained, and the input position is advanced past the matching material. The
until/last clause has visibility to bindings established in the previous clauses in that same iteration,
even though those bindings end up thrown away.

For consistency, the :mandatory keyword is supported in the until/last clause of gather. The
semantics of using :mandatory in this situation is tricky. In particular, if it is in effect, and the gather
terminates successfully by collecting all required matches, it will trigger a failure. On the other hand, if the
until or last clause activates before all required matches are gathered, a failure also occurs, whether or
not the clause is :mandatory.

Meaningful use of :mandatory requires that the gather be open-ended; it must allow some (or all) vari-
ables not to be required. The presence of the option means that for gather to succeed, all required vari-
ables must be gathered first, but then termination must be achieved via the until/last clause before all
gather clauses are satisfied.

7.3.16 Keyword parameters in gather
The gather directive accepts the keyword parameter :vars. The argument to :vars is a list of
required and optional variables. A required variable is specified as a symbol. An optional variable is speci-
fied as a two element list which pairs a symbol with a Lisp expression. That Lisp expression is evaluated
and specifies the default value for the variable.
Example:

@ (gather :vars (a b ¢ (d "foo")))

@ (end)

Here, a, b and c are required variables, and d is optional, with the default value given by the Lisp expres-
sion "foo".

The presence of : vars changes the behavior in three ways.
Firstly, even if all the clauses in the gather match successfully and are eliminated, the directive will fail if

the required variables do not have bindings. It doesn’t matter whether the bindings are existing, or whether
they are established by gather.

Utility Commands 2021-07-12 50

TXR(1) TXR Programming Language TXR(1)

Secondly, if some of the clauses of gather did not match, but all of the required variables have bindings,
then the directive succeeds. Without the presence of : vars, it would fail in this situation.

Thirdly, if gather succeeds (all required variables have bindings), then all of the optional variables which
do not have bindings are given bindings to their default values.

The expressions which give the default values are evaluated whenever the gather directive is evaluated,
whether or not their values are used.

7.3.17 The collect directive

The syntax of the collect directive is:

@(collect)
lines of subquery
@ (end)

or with an until or last clause:

@ (collect)

lines of subquery: main clause
@ (until)

lines of subquery: until clause
@ (end)

@(collect)

lines of subquery: main clause
Q@ (last)

lines of subquery: last clause
@ (end)

The repeat symbol may be specified instead of collect, which changes the meaning, see below:

@ (repeat)
lines of subquery
@ (end)

The subquery is matched repeatedly, starting at the current line. If it fails to match, it is tried starting at the
subsequent line. If it matches successfully, it is tried at the line following the entire extent of matched data,
if there is one. Thus, the collected regions do not overlap. (Overlapping behavior can be obtained: see the
@ (trailer) directive.)

Unless certain keywords are specified, or unless the collection is explicitly failed with @ (fail), it always
succeeds, even if it collects nothing, and even if the until/last clause never finds a match.

If no until/last clause is specified, and the collect is not limited using parameters, the collection is
unbounded: it consumes the entire data file.

7.3.18 The until/ last clausein collect
If an until/last clause is specified, the collection stops when that clause matches at the current position.
If an unt il clause terminates collect, no bindings are collected at that position, even if the main clause

matches at that position also. Moreover, the position is not advanced. The remainder of the query begins
matching at that position.

Utility Commands 2021-07-12 51

TXR(1)

TXR Programming Language

TXR(1)

If a 1ast clause terminates collect, the behavior is different. Any bindings captured by the main clause
are thrown away, just like with the until clause. However, the bindings in the 1ast clause itself survive,
and the position is advanced to skip over that material.

Example:

code:

data:

result:

@(collect)
Qa

@ (until)
42

Q@b

@ (end)

Qc

1
2
3
42
5
6

af0o]="1"
af1]="2"
a[2]="3"
c="42"

The line 42 is not collected, even though it matches @a. Furthermore, the @ (until) does not advance
the position, so variable c takes 42.

If the @ (until) is changed to @ (last) the output will be different:

result:

af0]="1"
af1l]="2"
a[2]="3"
b="5"
c="6"

The 42 is not collected into a list, just like before. But now the binding captured by @b emerges. Further-
more, the position advances so variable now takes 6.

The binding variables within the clause of a collect are treated specially. The multiple matches for each

variable are collected into lists, which then appear as array variables in the final output.

Example:

code:

data:

result:

Utility Commands

@ (collect)
@Qa:@b:@c
@ (end)

John:Doe:101
Mary:Jane:202
Bob:Coder:313

a[0]="John"
all]l="Mary"
al[2]="Bob"
b[0]="Doe"
b[1l]="Jane"
b[2]="Coder"
c[0]="101"

2021-07-12

52

TXR(1) TXR Programming Language TXR(1)

c[l]="202"
c[2]="313"

The query matches the data in three places, so each variable becomes a list of three elements, reported as an
array.

Variables with list bindings may be referenced in a query. They denote a multiple match. The —D command-
line option can establish a one-dimensional list binding.

The clauses of collect may be nested. Variable matches collated into lists in an inner collect are
again collated into nested lists in the outer collect. Thus an unbound variable wrapped in N nestings of
@ (collect) will be an N-dimensional list. A one-dimensional list is a list of strings; a two-dimensional
list is a list of lists of strings, etc.

It is important to note that the variables which are bound within the main clause of a collect, that is, the
variables which are subject to collection, appear, within the collect, as normal one-value bindings. The
collation into lists happens outside of the collect. So for instance in the query:

@ (collect)
@x=@x
@ (end)

The left @x establishes a binding for some material preceding an equal sign. The right @x refers to that
binding. The value of @x is different in each iteration, and these values are collected. What finally comes
out of the collect clause is a single variable called x which holds a list containing each value that was
ever instantiated under that name within the collect clause.

Also note that the unt il clause has visibility over the bindings established in the main clause. This is true
even in the terminating case when the until clause matches, and the bindings of the main clause are dis-
carded.

7.3.19 Keyword parameters in collect

By default, collect searches the rest of the input indefinitely, or until the until/last clause matches.
It skips arbitrary amounts of nonmatching material before the first match, and between matches.

Within the @ (collect) syntax, it is possible to specify keyword parameters for additional control of the
behavior. A keyword parameter consist of a keyword symbol followed by an argument, enclosed within the
@ (collect) syntax. The following are the supported keywords.

:maxgap n
The :maxgap keyword takes a numeric argument n, which is a Lisp expression. It causes col-
lect to terminate if it fails to find a match after skipping n lines from the starting position, or
more than n lines since any successful match. For example,

@ (collect :maxgap 5)

specifies that the gap between the current position and the first match for the body of the col-
lect, or between consecutive matches can be no longer than five lines. A :maxgap value of 0
means that the collected regions must be adjacent and must match right from the starting position.
For instance:

@ (collect :maxgap 0)

M Qa
@ (end)

Utility Commands 2021-07-12 53

TXR(1) TXR Programming Language TXR(1)

means: from here, collect consecutive lines of the form "M ...". This will not search for the
first such line, nor will it skip lines which do not match this form.

:mingap n
The :mingap keyword complements :maxgap, though not exactly. Its argument n, a Lisp
expression, specifies a minimum number of lines which must separate consecutive matches. How-
ever, it has no effect on the distance from the starting position to the first match.

:rgap n
The :gap keyword effectively specifies :mingap and :maxgap at the same time, and can only
be used if these other two are not used. Thus:

@(collect :gap 1)
Qa
@ (end)

means: collect every other line starting with the current line.

:times n
This shorthand means the same thing as if

:mintimes n :maxtimes n
were specified. This means that exactly n matches must occur. If fewer occur, then collect
fails. The collect stops once it achieves n matches.

:mintimes n
The argument n of the :mintimes keyword is a Lisp expression which specifies that at least n
matches must occur, or else collect fails.

:mintimes n
The Lisp argument expression n of the :mint imes keyword specifies that at most n matches are
collected.

:lines n
The argument n of the : 1ines keyword parameter is a Lisp expression which specifies the upper
bound on how many lines should be scanned by collect, measuring from the starting position.
The extent of the collect body is not counted. Example:

@ (collect :lines 2)

foo: Qa
bar: @b
baz: @c
@ (end)

The above collect will look for a match only twice: at the current position, and one line down.

:vars ({variable | (variable default-value) }*)
The :vars keyword specifies a restriction on what variables will emanate from the collect.
Its argument is a list of variable names. An empty list may be specified using empty parentheses
or, equivalently, the symbol nil. The default-value element of the syntax is a Lisp expres-
sion. The behavior of the : vars keyword is specified in the following section, "Specifying vari-
ablesin collect".

Utility Commands 2021-07-12 54

TXR(1) TXR Programming Language TXR(1)

:lists (variable¥*)
The :1ists keyword indicates a list of variables. After the collect terminates, each vari-
able in the list which does not have a binding is bound to the empty list symbol nil. Unlike
:vars the : 1ists mechanism doesn’t assert that only the listed variables may emanate from the
collect. Italso doesn’t assert that each iteration of the collect must bind each of those vari-
ables.

:counter {variable | (variable starting-value)}
The :counter keyword’s argument is a variable name symbol, or a compound expression con-
sisting of a variable name symbol and the TXR Lisp expression starting-value. If this key-
word argument is specified, then a binding for variable is established prior to each repetition of
the collect body, to an integer value representing the repetition count. By default, repetition
counts begin at zero. If starting-value is specified, it must evaluate to a number. This num-
ber is then added to each repetition count, and variable takes on the resulting displaced value.

If there is an existing binding for variable prior to the processing of the collect, then the
variable is shadowed.

The binding is collected in the same way as other bindings that are established in the collect
body.

The repetition count only increments after a successful match.

The variable is visible to the collect’s until/last clause. If that clause is being pro-
cessed after a successful match of the body, then variable holds an integer value. If the body
fails to match, then the until/last clause sees a binding for variable with a value of nil.

7.3.20 Specifying variables in collect

Normally, any variable for which a new binding occurs in a collect block is collected. A collect
clause may be "sloppy": it can neglect to collect some variables on some iterations, or bind some variables
which are intended to behave like local temporaries, but end up collated into lists. Another issue is that the
collect clause might not match anything at all, and then none of the variables are bound.

The :vars keyword allows the query writer to add discipline the collect body.

The argument to :vars is a list of variable specs. A variable spec is either a symbol, denoting a required
variable, or a (symbol default-value) pair, where default-value is a Lisp expression whose
value specifies a default value for the variable, which is optional.

When a :vars list is specified, it means that only the given variables can emerge from the successful
collect. Any newly introduced bindings for other variables do not propagate. More precisely, whenever
the collect body matches successfully, the following three rules apply:

1. If :vars specifies required variables, the collect body must bind all of them, or else must not
bind any variable at all, whether listed in : vars or not, otherwise an exception of type query-
error is thrown.

2. If : vars specifies required variables, and also specifies default variables, and the collect body
binds no variable at all, then the default variables are not bound to their default values.

3. If :vars specifies optional variables, and all required variables are bound by the collect body,
then all those optional variables that are not bound by the collect body are bound to their
default values. Under this rule, if : vars specifies no required variables, that is deemed to be logi-
cally equivalent to all required variables being bound.

In the event that collect does not match anything, the variables specified in : vars, whether required or
optional, are all bound to empty lists. These bindings are established after the processing of the

Utility Commands 2021-07-12 55

TXR(1) TXR Programming Language TXR(1)

until/last clause, if present.
Example:

@(collect :vars (a b (c "foo")))
@a @c
@ (end)

Here, if the body "Q@a @c" matches, an error will be thrown because one of the mandatory variables is b,
and the body neglects to produce a binding for b.

Example:

@(collect :vars (a (c "foo")))
@a @b
@ (end)

Here, if "@a @b" matches, only a will be collected, but not b, because b is not in the variable list. Fur-
thermore, because there is no binding for ¢ in the body, a binding is created with the value "foo", exactly
as if ¢ matched such a piece of text.

In the following example, the assumption is that THIS NEVER MATCHES is not found anywhere in the
input but the line THIS DOES MATCH is found and has a successor which is bound to a. Because the

body did not match, the : vars a and b should be bound to empty lists. But a is bound by the last clause
to some text, so this takes precedence. Only b is bound to an empty list.

@(collect :vars (a b))
THIS NEVER MATCHES
@(last)

THIS DOES MATCH

Qa

@ (end)

The following means: do not allow any variables to propagate out of any iteration of the collect and
therefore collect nothing:

@ (collect :vars nil)
@ (end)
Instead of writing @ (collect :vars nil), itis possible to write @ (repeat). @ (repeat) takes

all collect keywords, except for :vars. There is a @ (repeat) directive used in @ (output)
clauses; that is a different directive.

7.3.21 Mandatory until and last

The until/last clause supports the option keyword :mandatory, exemplified by the following:
@ (collect)
é;iast :mandatory)
é;énd)

This means that the collect must be terminated by a match for the until/last clause, or else by an

Utility Commands 2021-07-12 56

TXR(1) TXR Programming Language TXR(1)

explicit @ (accept).

Specifically, the collect cannot terminate due to simply running out of data, or exceeding a limit on the
number of matches that may be collected. In those situations, if an until or last clause is present with
:mandatory, the collect is deemed to have failed.

7.3.22 The col1l directive

The coll directive is the horizontal version of collect. Whereas collect works with multiline
clauses on line-oriented material, col1l works within a single line. With col1, it is possible to recognize
repeating regularities within a line and collect lists.

Regular-expression-based Positive Match variables work well with col1.

Example: collect a comma-separated list, terminated by a space.

code: @(coll)@{A /[~, 1+/}Q@(until) @ (end)@B

data: foo,bar,xyzzy blorch

result: A[0]="foo"
A[l]="bar"
Al2]="xyzzy"
B=blorch

Here, the variable A is bound to tokens which match the regular expression /[~, 1+/: nonempty
sequence of characters other than commas or spaces.

Like collect, coll searches for matches. If no match occurs at the current character position, it tries at
the next character position. Whenever a match occurs, it continues at the character position which follows
the last character of the match, if such a position exists.

If not bounded by an until clause, it will exhaust the entire line. If the until clause matches, then the collec-
tion stops at that position, and any bindings from that iteration are discarded. Like collect, coll also sup-
ports an until/last clause, which propagates variable bindings and advances the position. The
:mandatory keyword is supported.

coll clauses nest, and variables bound within a coll are available to clauses within the rest of the coll
clause, including the until/last clause, and appear as single values. The final list aggregation is only
visible after the col1 clause.

The behavior of coll leads to difficulties when a delimited variable are used to match material which is
delimiter separated rather than terminated. For instance, entries in a comma-separated files usually do not
appear as "a, b, c, " but rather "a, b, c".

So for instance, the following result is not satisfactory:

code: Q@ (coll)@a @ (end)

data: 1 2345
result: a[o]="1i"
a[l]:"2"
a[2]:"3"
a[3]:"4"

The 5 is missing because it isn’t followed by a space, which the text-delimited variable match "@a " looks
for. After matching "4 ", coll continues to look for matches, and doesn’t find any. It is tempting to try to fix
it like this:

Utility Commands 2021-07-12 57

TXR(1)

TXR Programming Language TXR(1)

code: @(coll)@a@/ ?/@Q (end)
data: 1 23405

result: a[ol=""
a[fl]=""
a[2]=""
a[3]=""
a[4aj=""
a[5]=""
al6]=""
a[71=""
a[g]=""

The problem now is that the regular expression / 2/ (match either a space or nothing), matches at any
position. So when it is used as a variable delimiter, it matches at the current position, which binds the
empty string to the variable, the extent of the match being zero. In this situation, the coll directive pro-
ceeds character by character. The solution is to use positive matching: specify the regular expression which
matches the item, rather than a trying to match whatever follows. The collect directive will recognize
all items which match the regular expression:

code: @(coll)@{a /[~ 1+/}@(end)

data: 123405
result: a[o]="1i"
afl]="2"
a[2]="3"
al[3]="4"
af4]="5"

The until clause can specify a pattern which, when recognized, terminates the collection. So for instance,
suppose that the list of items may or may not be terminated by a semicolon. We must exclude the semicolon
from being a valid character inside an item, and add an until clause which recognizes a semicolon:

code: @(coll)@{a /[~ ;1+/}Q@(until) ;@ (end);

data: 1 23 45;

result: a[o]="1i"
afl]="2"
a[2]="3"
al3]="4"
af4]="5"

Whether followed by the semicolon or not, the items are collected properly.

Note that the @ (end) is followed by a semicolon. That’s because when the @ (until) clause meets a
match, the matching material is not consumed.

This repetition can be avoided by using @ (last) instead of @ (until) since @ (last) consumes the
terminating material.

Instead of the above regular-expression-based approach, this extraction problem can also be solved with
cases:

code: @ (coll)@(cases)@a @ (or)@a@ (end)@ (end)

data: 1 23405
result: a[o]="1i"
a[l]:"2"
a[2]:"3"

Utility Commands 2021-07-12 58

TXR(1) TXR Programming Language TXR(1)

a[3]="4"
a[4]="5"

7.3.23 Keyword parameters in coll

The @ (coll) directive takes most of the same parameters as @ (collect). See the section Keyword
parameters in collect above. So for instance @ (coll :gap 0) means that the collects must be con-
secutive, and @ (coll :maxtimes 2) means that at most two matches will be collected. The : 1ines
keyword does not exist, but there is an analogous : chars keyword.

The @ (coll) directive takes the : vars keyword.

The shorthand @ (rep) may be used instead of @ (coll :vars nil). @ (rep) takes all keywords,
except :vars.

7.3.24 The £1latten directive

The flatten directive can be used to convert variables to one-dimensional lists. Variables which have a
scalar value are converted to lists containing that value. Variables which are multidimensional lists are flat-
tened to one-dimensional lists.

Example (without @ (flatten)):

code: Q@b
@(collect)
@(collect)
Qa
@ (end)

@ (end)

data: 0

W N

5

result: b="0"
a_0[0]="1"
a_1[0]="2"
a_2[0]="3"
a_3[0]="4"
a_4[0]="5"

Example (with @ (flatten)):

code: Q@b
@(collect)
@(collect)
Qa
@ (end)
@ (end)
Q@ (flatten a b)

data:

0
1
2
3
4

Utility Commands 2021-07-12 59

TXR(1)

TXR Programming Language TXR(1)

5

result: b="0"
al0]="1"
afl]="2"
a[2]="3"
al3]="4"
af4]="5"

7.3.25 The merge directive

The syntax of merge follows the pattern:
@ (merge destination [sources ...])
destinationis a variable, which receives a new binding. sources are bind expressions.

The merge directive provides a way of combining collected data from multiple nested lists in a way which
normalizes different nesting levels among the sources. This directive is useful for combining the results
from collects at different levels of nesting into a single nested list such that parallel elements are at equal
depth.

A new binding is created for the destination variable, which holds the result of the operation.

The merge directive performs its special function if invoked with at least three arguments: a destination
and two sources.

The one-argument case @ (merge x) binds a new variable x and initializes it with the empty list and is
thus equivalent to @ (bind x). Likewise, the two-argument case @ (merge x y) is equivalent to
@ (bind x y), establishing a binding for x which is initialized with the value of y.

To understand what merge does when two sources are given, as in @ (merge C A B), we first have to
define a property called depth. The depth of an atom such as a string is defined as 1. The depth of an
empty list is 0. The depth of a nonempty list is one plus the depth of its deepest element. So for instance
"foo" has depth 1, ("foo") hasdepth2,and ("foo" ("bar")) has depth three.

We can now define a binary (two argument) merge(A, B) function as follows. First, merge(A, B) normal-
izes the values A and B to produce a pair of values which have equal depth, as defined above. If either
value is an atom it is first converted to a one-element list containing that atom. After this step, both values
are lists; and the only way an argument has depth zero is if it is an empty list. Next, if either value has a
smaller depth than the other, it is wrapped in a list as many times as needed to give it equal depth. For
instance if A is ("a") and B is (((("b"™ "c") ("d" "e)))) then A is converted to
(((("™a")))). Finally, the list values are appended together to produce the merged result. In the case of
the preceding two example values, the result is: (((("a"))) ((("b"™ "c") ("d" "e)))). The
result is stored into a the newly bound destination variable C.

If more than two source arguments are given, these are merged by a left-associative reduction, which is to

say that a three argument merge (X, Y, Z) is defined as merge (merge (X, Y), Z). The leftmost
two values are merged, and then this result is merged with the third value, and so on.

7.3.26 The cat directive

The cat directive converts a list variable into a single piece of text. The syntax is:

Q@ (cat var [sep])

Utility Commands 2021-07-12 60

TXR(1) TXR Programming Language TXR(1)

The sep argument is a Lisp expression whose value specifies a separating piece of text. If it is omitted,
then a single space is used as the separator.

Example:

code: @(coll)@{a /[~ 1+/}@(end)
@Q(cat a ": ")

data: 123405

result: a="1:2:3:4:5"
7.3.27 The bind directive

The syntax of the bind directive is:
Q@ (bind pattern bind-expression {keyword value}¥*)

The bind directive is a kind of pattern match, which matches one or more variables given in pattern
against a value produced by the bind-expression on the right.

Variable names occurring in the pattern expression may refer to bound or unbound variables.
All variable references occurring in bind-expression must have a value.

Binding occurs as follows. The tree structure of pattern and the value of bind-expression are con-
sidered to be parallel structures.

Any variables in pattern which are unbound receive a new binding, which is initialized with the struc-
turally corresponding piece of the object produced by bind-expression.

Any variables in pattern which are already bound must match the corresponding part of the value of
bind-expression, or else the bind directive fails. Variables which are already bound are not altered,
retaining their current values even if the matching is inexact.

The simplest bind is of one variable against itself, for instance binding A against A:

@ (bind A A)
This will throw an exception if A is not bound. If A is bound, it succeeds, since A matches itself.
The next simplest bind binds one variable to another:

@ (bind A B)

Here, if A is unbound, it takes on the same value as B. If A is bound, it has to match B, or the bind fails.
Matching means that either

- A and B are the same text

- A is text, B is a list, and A occurs within B.

- vice versa: B is text, A is a list, and B occurs within A.

- A and B are lists and are either identical, or one is found as a substructure within the other.

The right-hand side does not have to be a variable. It may be some other object, like a string, quasiliteral,
regexp, or list of strings, etc. For instance,

@(bind A "ab\tc")

Utility Commands 2021-07-12 61

TXR(1) TXR Programming Language TXR(1)

will bind the string "ab\tc" to the variable A if A is unbound. If A is bound, this will fail unless A already
contains an identical string. However, the right-hand side of a bind cannot be an unbound variable, nor a
complex expression that contains unbound variables.

The left-hand side of bind can be a nested list pattern containing variables. The last item of a list at any
nesting level can be preceded by a . (dot), which means that the variable matches the rest of the list from
that position.

Example 1:

Suppose that the list A contains ("now" "now" "brown" "cow"). Then the directive
@(bind (H N . C) A), assuming that H, N and C are unbound variables, will bind H to
"how", code N to "now", and C to the remainder of the list ("brown" "cow") .

Example: suppose that the list A is nested to two dimensions and contains (("how" "now")
("brown" "cow")). Then @(bind ((H N) (B C)) A) binds H to "how", N to
"now",B to "brown" and C to "cow".

The dot notation may be used at any nesting level. it must be followed by an item. The forms (.)
and (X .) areinvalid, but (. X) is valid and equivalent to X.

The number of items in a left pattern match must match the number of items in the corresponding
right side object. So the pattern () only matches an empty list. The notations () and nil mean
exactly the same thing.

The symbols nil, t and keyword symbols may be used on either side. They represent them-
selves. For example @ (bind :foo :bar) fails, but @ (bind :foo :foo) succeeds since
the two sides denote the same keyword symbol object.

Example 2:

In this example, suppose A contains "foo" and B contains bar. Then @ (bind (X (Y Z)) (A
(B "hey"))) binds X to "foo", Y to "bar" and Z to "hey". This is because the bind-
expression produces the object ("foo" ("bar" "hey")) which is then structurally
matched against the pattern (X (Y Z)), and the variables receive the corresponding pieces.

7.3.28 Keywords in the bind directive

The bind directive accepts these keywords:

:1filt
The argument to : 1filt is a filter specification. When the left side pattern contains a binding
which is therefore matched against its counterpart from the right side expression, the left side is
filtered through the filter specified by : 1£i1t for the purposes of the comparison. For example:

@ (bind "a™ "A" :1filt :upcase)

produces a match, since the left side is the same as the right after filtering through the :upcase fil-
ter.

:rfilt
The argument to : rfilt is a filter specification. The specified filter is applied to the right-hand-
side material prior to matching it against the left side. The filter is not applied if the left side is a
variable with no binding. It is only applied to determine a match. Binding takes place the

Utility Commands 2021-07-12 62

TXR(1)

TXR Programming Language TXR(1)

unmodified right-hand-side object.
For example, the following produces a match:

@ (bind "A"™ "a" :rfilt :upcase)

:filter
This keyword is a shorthand to specify both filters to the same value. For instance :filter
:upcaseisequivalentto : 1filt :upcase :rfilt :upcase.

For a description of filters, see Output Filtering below.

Compound filters like (:fromhtml :upcase) are supported with all these keywords. The fil-
ters apply across arbitrary patterns and nested data.

Example:

@(blnd (a b c) ("A"™ "B" "Cm))
@(bind (a b c) (("z" "a") "b" "c") :rfilt :upcase)

Here, the first bind establishes the values for a, b and ¢, and the second bind succeeds, because

the value of a matches the second element of the list ("z" "a"™) ifitis upcased, and likewise b
matches "b" and c matches "c" if these are upcased.

7.3.29 Lisp forms in the bind directive

TXR Lisp forms, introduced by @ may be used in the bind-expression argument of bind, or as the
entire form. This is consistent with the rules for bind expressions.

TXR Lisp forms can be used in the pattern expression also.
Example:

@(bind a @(+ 2 2))
@(bind @(+ 2 2) @(* 2 2))

Here, a is bound to the integer 4. The second bind then succeeds because the forms (+ 2 2) and (* 2
2) produce equal values.

7.3.30 The set directive
The syntax of the set directive is:

@ (set pattern bind-expression)
The set directive syntactically resembles bind, but is not a pattern match. It overwrites the previous val-
ues of variables with new values from the right-hand side. Each variable that is assigned must have an
existing binding: set will not induce binding.
Examples follow.

Store the value of A back into A, an operation with no effect:

@ (set A A)

Utility Commands 2021-07-12 63

TXR(1) TXR Programming Language TXR(1)

Exchange the values of A and B:
@(set (A B) (B A))
Store a string into A:
@(set A "text")
Store a list into A:
@Q(set A ("linel" "line2"))

Destructuring assignment. A ends up with "A", B ends up with ("B1" "B2") and C binds to ("C1"
n C2 n) .

@ (bind D ("A" ("Bl" "B2") "Cl" "C2"))
@Q(bind (A B C) (() O O))
@Q(set (A B . C) D)

Note that set does not support a TXR Lisp expression on the left side, so the following are invalid syntax:

@(set @(+ 1 1) @(* 2 2))
Q(set @b Q@(list "a"))

The second one is erroneous even though there is a variable on the left. Because it is preceded by the @
escape, it is a Lisp variable, and not a pattern variable.

The set directive also doesn’t support Lisp expressions in the pat tern, which must consist only of vari-
ables.

7.3.31 The rebind directive

The syntax of the rebind directive is:
@ (rebind pattern bind-expression)

The rebind directive resembles bind. It combines the semantics of 1local and bind into a single
directive. The bind-expression is evaluated in the current environment, and its value remembered.
Then a new environment is produced in which all the variables specified in pat tern are absent. Then, the
pattern is newly bound in that environment against the previously produced value, as if using bind.

The old environment with the previous variables is not modified; it continues to exist. This is in contrast
with the set directive, which mutates existing bindings.

rebind makes it easy to create temporary bindings based on existing bindings.

@ (define pattern—-function (arg))

@;; inside a pattern function:

@ (rebind recursion-level @ (+ recursion-level 1))
@;;

@ (end)

When the function terminates, the previous value of recursion-level is restored. The effect is less verbose
and more efficient than the following equivalent

Utility Commands 2021-07-12 64

TXR(1)

TXR Programming Language TXR(1)

@ (define pattern-function (arg))
@;; inside a pattern function:
@(local temp)

@ (set temp recursion-level)
@(local recursion-level)

@ (set recursion-level @ (+ temp 1))
@;;

@ (end)

Like bind, rebind supports nested patterns, such as

@ (rebind (a (b c¢)) (1 (2 3))
but it does not support any keyword arguments. The filtering features of bind do not make sense in
rebind because the variables are always reintroduced into an environment in which they don’t exist,

whereas filtering applies in situations when bound variables are matched against values.

The rebind directive also doesn’t support Lisp expressions in the pat tern, which must consist only of
variables.

7.3.32 The forget directive
The forget has two spellings: @ (forget) and @ (local).
The arguments are one or more symbols, for example:

@ (forget a)
@(local a b c)

this can be written

@(local a)
@(local a b c)

Directives which follow the forget or 1local directive no longer see any bindings for the symbols men-
tioned in that directive, and can establish new bindings.

It is not an error if the bindings do not exist.

It is strongly recommended to use the @ (Local) spelling in functions, because the forgetting action simu-
lates local variables: for the given symbols, the machine forgets any earlier variables from outside of the
function, and consequently, any new bindings for those variables belong to the function. (Furthermore,

functions suppress the propagation of variables that are not in their parameter list, so these locals will be
automatically forgotten when the function terminates.)

7.3.33 The do directive
The syntax of @ (do) is:

@(do lisp-expression*)

The do directive evaluates zero or more TXR Lisp expressions. (See TXR LISP far below.) The value of
the expression is ignored, and matching continues with the directives which follow the do directive, if any.

In the context of the do directive, the expression should not be introduced by the @ symbol; it is expected to

Utility Commands 2021-07-12 65

TXR(1) TXR Programming Language TXR(1)

be a Lisp expression.

Example:
@; match text into variables a and b, then insert into hash table h
@ (bind h @ (hash))

Qa:@b
@(do (set [h al b))

7.3.34 The mdo directive
The syntax of @ (mdo) is:
@ (mdo lisp-expression*)

Like the do directive, mdo (macro-time do) evaluates zero or more TXR Lisp expressions. Unlike do,
mdo performs this evaluation immediately upon being parsed. Then it disappears from the syntax.

The effect of @ (mdo e0 el e2 ...) isexactly like @ (do (macro-time e0 el e2 ...))
except that do doesn’t disappear from the syntax.

Another difference is that do can be used as a horizontal or vertical directive, whereas mdo is only vertical.

7.3.35 The in—-package directive

The in-package directive shares the same syntax and semantics as the TXR Lisp macro of the same
name:

(in—-package name)

The in-package directive is evaluated immediately upon being parsed, leaving no trace in the syntax
tree of the surrounding TXR query.

It causes the *package* special variable to take on the package denoted by name.

The directive that name is either a string or symbol. An error exception is thrown if this isn’t the case.
Otherwise it searches for the package. If the package is not found, an error exception is thrown.

7.4 Blocks
7.4.1 Overview

Blocks are sections of a query which are either denoted by a name, or are anonymous. They may nest:
blocks can occur within blocks and other constructs.

Blocks are useful for terminating parts of a pattern-matching search prematurely, and escaping to a higher
level. This makes blocks not only useful for simplifying the semantics of certain pattern matches, but also

an optimization tool.

Judicious use of blocks and escapes can reduce or eliminate the amount of backtracking that TXR per-
forms.

7.4.2 The block directive

The @ (block name) directive introduces a named block, except when name is the symbol nil. The

Utility Commands 2021-07-12 66

TXR(1) TXR Programming Language TXR(1)

@ (block) directive introduces an unnamed block, equivalent to @ (block nil).
The @ (skip) and @ (collect) directives introduce implicit anonymous blocks, as do function bodies.
Blocks must be terminated by @ (end) and can be vertical:
@(block [namel])
@ (end)
or horizontal:

Q@ (block [name])...Q (end)

7.4.3 Block Scope

The names of blocks are in a distinct namespace from the variable binding space. So @ (block foo) is
unrelated to the variable @ foo.

A block extends from the @ (block ...) directive which introduces it, until the matching @ (end), and
may be empty. For instance:

@ (some)

abc

Q@ (block foo)
XY Z

@ (end)

@ (end)

Here, the block foo occurs in a @ (some) clause, and so it extends to the @ (end) which terminates the
block. After that @ (end), the name foo is not associated with a block (is not "in scope"). The second
@ (end) terminates the @ (some) block.

The implicit anonymous block introduced by @ (skip) has the same scope as the @ (skip): it extends
over all of the material which follows the skip, to the end of the containing subquery.

7.4.4 Block Nesting

Blocks may nest, and nested blocks may have the same names as blocks in which they are nested. For
instance:

@ (block)
@ (block)

is a nesting of two anonymous blocks, and

@ (block foo)

@ (block foo)

@ (end)

@ (end)

is a nesting of two named blocks which happen to have the same name. When a nested block has the same

Utility Commands 2021-07-12 67

TXR(1) TXR Programming Language TXR(1)

name as an outer block, it creates a block scope in which the outer block is "shadowed"; that is to say,
directives which refer to that block name within the nested block refer to the inner block, and not to the
outer one.

7.4.5 Block Semantics

A block normally does nothing. The query material in the block is evaluated normally. However, a block
serves as a termination point for @ (fail) and Q@ (accept) directives which are in scope of that block
and refer to it.

The precise meaning of these directives is:

@ (fail name)
Immediately terminate the enclosing query block called name, as if that block failed to match any-
thing. If more than one block by that name encloses the directive, the innermost block is termi-
nated. No bindings emerge from a failed block.

Q@ (fail)
Immediately terminate the innermost enclosing anonymous block, as if that block failed to match.

The @ (fail) directive has a vertical and horizontal form.

If the implicit block introduced by @ (skip) is terminated in this manner, this has the effect of
causing skip itself to fail. In other words, the behavior is as if @ (skip)’s search did not find a
match for the trailing material, except that it takes place prematurely (before the end of the avail-
able data source is reached).

If the implicit block associated with a @ (collect) is terminated this way, then the entire col—
lect fails. This is a special behavior, because a collect normally does not fail, even if it
matches nothing and collects nothing!

To prematurely terminate a collect by means of its anonymous block, without failing it, use
@ (accept).

@ (accept name)
Immediately terminate the enclosing query block called name, as if that block successfully
matched. If more than one block by that name encloses the directive, the innermost block is termi-
nated.

@ (accept)
Immediately terminate the innermost enclosing anonymous block, as if that block successfully
matched.

@ (accept) communicates the current bindings and input position to the terminated block. These
bindings and current position may be altered by special interactions between certain directives and
@ (accept), described in the following section. Communicating the current bindings and input
position means that the block which is terminated by @ (accept) exhibits the bindings which
were collected just prior to the execution of that @ (accept) and the input position which was in
effect at that time.

@ (accept) has a vertical and horizontal form. In the horizontal form, it communicates a hori-

zontal input position. A horizontal input position thus communicated will only take effect if the
block being terminated had been suspended on the same line of input.

Utility Commands 2021-07-12 68

TXR(1)

TXR Programming Language TXR(1)

If the implicit block introduced by @ (skip) is terminated by @ (accept), this has the effect of
causing the skip itself to succeed, as if all of the trailing material had successfully matched.

If the implicit block associated with a @ (collect) is terminated by @ (accept), then the col-
lection stops. All bindings collected in the current iteration of the collect are discarded. Bindings
collected in previous iterations are retained, and collated into lists in accordance with the seman-
tics of collect.

Example: alternative way to achieve @ (until) termination:

@ (collect)
@ (maybe)

@ (accept)

@ (end)

QLINE

@ (end)
This query will collect entire lines into a list called LINE. However, if the line ——- is matched
(by the embedded @ (maybe)), the collection is terminated. Only the lines up to, and not includ-
ing the ——- line, are collected. The effect is identical to:

@ (collect)
@QLINE
@ (until)

@ (end)

The difference (not relevant in these examples) is that the until clause has visibility into the bind-
ings set up by the main clause.

However, the following example has a different meaning:

@(collect)
QLINE

@ (maybe)
@ (accept)
@ (end)

@ (end)

Now, lines are collected until the end of the data source, or until a line is found which is followed
by a ——- line. If such a line is found, the collection stops, and that line is not included in the col-
lection! The @ (accept) terminates the process of the collect body, and so the action of collect-
ing the last RLINE binding into the list is not performed.

Example: communication of bindings and input position:

code:

@ (some)

@ (block foo)
@first

@ (accept foo)
@ignored

@ (end)
@second

Utility Commands 2021-07-12 69

TXR(1) TXR Programming Language TXR(1)

data: 1
2
3
result: first="1"

second="2"

At the point where the accept occurs, the foo block has matched the first line, bound the text "1 " to the
variable @first. The block is then terminated. Not only does the @first binding emerge from this ter-
minated block, but what also emerges is that the block advanced the data past the first line to the second
line. Next, the @ (some) directive ends, and propagates the bindings and position. Thus the @second
which follows then matches the second line and takes the text "2".

Example: abandonment of @ (some) clause by @ (accept):

In the following query, the foo block occurs inside a maybe clause. Inside the foo block there is a
@ (some) clause. Its first subclause matches variable @first and then terminates block foo. Since block
foo is outside of the @ (some) directive, this has the effect of terminating the @ (some) clause:

code: @ (maybe)
@ (block foo)
@ (some)
@first
@ (accept foo)
@ (or)
@Qone
@two
@three
@four
@ (end)
@ (end)
@second

data: 1

a s W

result: first="1"
second="2"

The second clause of the @ (some) directive, namely:

@Qone
@two
@three
@four

is never processed. The reason is that subclauses are processed in top to bottom order, but the processing
was aborted within the first clause the @ (accept foo). The @ (some) construct never gets the oppor-
tunity to match four lines.

If the @ (accept foo) line is removed from the above query, the output is different:

code: @ (maybe)
@ (block foo)
@ (some)
@Qfirst

Utility Commands 2021-07-12 70

TXR(1)

TXR Programming Language TXR(1)

Q# <-— (@ (accept foo) removed from here!!!
@ (or)

@Qone

@two

@three

@four

@ (end)

@ (end)

@second

data: 1

a s Wi

result: first="1"
one="1"
two="2"
three="3"
four="4"
second="5"

Now, all clauses of the @ (some) directive have the opportunity to match. The second clause grabs four
lines, which is the longest match. And so, the next line of input available for matching is 5, which goes to
the @second variable.

7.4.6 Interaction Between the t railer and accept Directives

If one of the clauses which follow a @ (trailer) requests a successful termination to an outer block via
@ (accept), then @ (trailer) intercepts the escape and adjusts the data extent to the position that it
was given.

Example:

code: Q@ (block)
@ (trailer)
@linel
@line2
@ (accept)
@ (end)
@line3

data: 1
2
3

result: linel="1"
line2="2"
line3="1"

The variable 1ine3 is bound to "1" because although @ (accept) yields a data position which has
advanced to the third line, this is intercepted by @ (trailer) and adjusted back to the first line. Neglect-
ing to do this adjustment would violate the semantics of trailer

7.4.7 Interaction Between the next and accept Directives

When the clauses under a next directive are terminated by an accept, such that control passes to a block
which surrounds that next, the accept is intercepted by next.

Utility Commands 2021-07-12 71

TXR(1)

TXR Programming Language TXR(1)

The input position being communicated by the accept is replaced with the original input position in the
original stream which is in effect prior to the next directive. The accept transfer is then resumed.

In other words, accept cannot be used to "leak" the new stream out of a next scope.
However, next has no effect on the bindings being communicated.
Example:

@ (next "file-x")
Q@ (block b)

Q@ (next "file-y")
@line

@ (accept b)

@ (end)

Here, the variable 1ine matches the first line of the file "file-y", after which an accept transfer is
initiated, targeting block b. This transfer communicates the 1ine binding, as well as the position within
file-y, pointing at the second line. However, the accept traverses the next directive, causing it to be
abandoned. The special unwinding action within that directive detects this transfer and rewrites the input
position to be the original one within the stream associated with "file-x". Note that this special han-
dling exists in order for the behavior to be consistent with what would happen if the @ (accept b) were
removed, and the block b terminated normally: because the inner next is nested within that block, TXR
would backtrack to the previous input position within "file-x".

7.4.8 Interaction Between Functions and the accept directive

If a pattern function is terminated due to accept, the function return mechanism intercepts the accept.
The bindings being communicated by that accept are then subject to the special resolution with respect to
the function parameters, exactly as if the bindings were being returned normally out of the function. The
resolved bindings then replace those being communicated by the accept and the accept transfer is
resumed.
Example:

@ (define fun (a))
@ (bind a "a")
@ (bind b "b")
@ (accept blk)
@ (end)
Q@ (block blk)
Q@ (fun x)
this line is skipped by accept
@ (end)

Here, the accept initiates a control transfer which communicates the a and b variable bindings which are
visible in that scope. This transfer is intercepted by the function, and the treatment of the bindings follows
to the same rules as a normal return (which, in the given function, would readily take place if the accept
directive were removed). The b variable is suppressed, because b isn’t a parameter of the function. Because
a is a parameter, and the argument to that parameter is the unbound variable x, the effect is that x is bound
to the value of a. When the accept transfer reaches block b1k and terminates it, all that emerges is the x
binding carrying "a".

If the accept invocation is removed from fun, then the function returns normally, producing the x bind-
ing. In that case, the line this line is skipped by accept isn’t skipped since the block isn’t

Utility Commands 2021-07-12 72

TXR(1) TXR Programming Language TXR(1)

being terminated; that line must match something.

7.4.9 Interaction Between finally and the accept directive

If the exception handling try directive protected body is terminated by an accept transfer, and if that
try has a finally block, then there is a special interaction between the finally block and the
accept transfer.

The processing of the finally block detects that it has been triggered by an accept transfer. Conse-
quently, it retrieves the current input position and bindings from that transfer, and uses that position and
those bindings for the processing of the finally clauses.

If the finally clauses succeed, then the new input position and new bindings are installed into the
accept control transfer and that transfer resumes.

If the £inally clauses fail, then the accept transfer is converted to a fail, with exactly the same
block as its destination.

7.4.10 Vertical-Horizontal Mismatch Between block and accept

The block, accept and fail directives comes in horizontal and vertical forms.

This creates the possibility that an accept in horizontal context targets a vertical block or vice versa,
raising the question of how the input position is treated. The semantics of this is defined.

If a horizontal-context accept targets a vertical block, the current position at the target block will be the
following line. That is to say, when the horizontal accept occurs, there is a current input line which may
have unconsumed material past the current position. If the accept communicates its input position to a
vertical context, that unconsumed material is skipped, as if it had been matched and the vertical position is
advanced to the next line.

If a horizontal block catches a vertical accept, it rejects that accept’s position and stays at the current
backtracking position for that block. Only the bindings from the accept are retained.

7.4.11 Horizontal-Horizontal Mismatch between block and accept

It is possible for a horizontal accept to terminate in a horizontal block which is processing a different line
of input (or even a different input stream). This situation is treated the same way as vertical accept termi-
nating in a horizontal block: the position communicated by accept is ignored, and only the bindings are
taken.

7.5 Functions
7.5.1 Overview

TXR functions allow a query to be structured to avoid repetition. On a theoretical note, because TXR
functions support recursion, functions enable TXR to match some kinds of patterns which exhibit self-
embedding, or nesting, and thus cannot be matched by a regular language.

Functions in TXR are not exactly like functions in mathematics or functional languages, and are not like
procedures in imperative programming languages. They are not exactly like macros either. What it means
for a TXR function to take arguments and produce a result is different from the conventional notion of a

function.

A TXR function may have one or more parameters. When such a function is invoked, an argument must be

Utility Commands 2021-07-12 73

TXR(1) TXR Programming Language TXR(1)

specified for each parameter. However, a special behavior is at play here. Namely, some or all of the argu-
ment expressions may be unbound variables. In that case, the corresponding parameters behave like
unbound variables also. Thus TXR function calls can transmit the "unbound" state from argument to
parameter.

It should be mentioned that functions have access to all bindings that are visible in the caller; functions may
refer to variables which are not mentioned in their parameter list.

With regard to returning, TXR functions are also unconventional. If the function fails, then the function call
is considered to have failed. The function call behaves like a kind of match; if the function fails, then the
call is like a failed match.

When a function call succeeds, then the bindings emanating from that function are processed specially.
Firstly, any bindings for variables which do not correspond to one of the function’s parameters are thrown
away. Functions may internally bind arbitrary variables in order to get their job done, but only those vari-
ables which are named in the function argument list may propagate out of the function call. Thus, a func-
tion with no arguments can only indicate matching success or failure, but not produce any bindings. Sec-
ondly, variables do not propagate out of the function directly, but undergo a renaming. For each parameter
which went into the function as an unbound variable (because its corresponding argument was an unbound
variable), if that parameter now has a value, that value is bound onto the corresponding argument.

Example:

@ (define collect-words (list))
@(coll)@{list /[~ \t]l+/}@(end)
@ (end)

The above function collect-words contains a query which collects words from a line (sequences of
characters other than space or tab), into the list variable called 1ist. This variable is named in the param-
eter list of the function, therefore, its value, if it has one, is permitted to escape from the function call.

Suppose the input data is:
Fine summer day
and the function is called like this:
@(collect-words wordlist)
The result (with txr -B) is:

wordlist [0]=Fine
wordlist[1l]=summer
wordlist[l]=day

How it works is that in the function call @ (collect-words wordlist), wordlist is an unbound
variable. The parameter corresponding to that unbound variable is the parameter 1ist. Therefore, that
parameter is unbound over the body of the function. The function body collects the words of "Fine
summer day" into the variable 1ist, and then yields the that binding. Then the function call completes
by noticing that the function parameter 1ist now has a binding, and that the corresponding argument
wordlist has no binding. The binding is thus transferred to the wordlist variable. After that, the
bindings produced by the function are thrown away. The only enduring effects are:

- the function matched and consumed some input; and

Utility Commands 2021-07-12 74

TXR(1) TXR Programming Language TXR(1)

- the function succeeded; and
- the wordlist variable now has a binding.

Another way to understand the parameter behavior is that function parameters behave like proxies which
represent their arguments. If an argument is an established value, such as a character string or bound vari-
able, the parameter is a proxy for that value and behaves just like that value. If an argument is an unbound
variable, the function parameter acts as a proxy representing that unbound variable. The effect of binding
the proxy is that the variable becomes bound, an effect which is settled when the function goes out of
scope.

Within the function, both the original variable and the proxy are visible simultaneously, and are indepen-
dent. What if a function binds both of them? Suppose a function has a parameter called P, which is called
with an argument A, which is an unbound variable, and then, in the function, both A and P bound. This is
permitted, and they can even be bound to different values. However, when the function terminates, the
local binding of A simply disappears (because the symbol A is not among the parameters of the function).
Only the value bound to P emerges, and is bound to A, which still appears unbound at that point. The P
binding disappears also, and the net effect is that A is now bound. The "proxy" binding of A through the
parameter P "wins" the conflict with the direct binding.

7.5.2 Definition Syntax

Function definition syntax comes in two flavors: vertical and horizontal. Horizontal definitions actually
come in two forms, the distinction between which is hardly noticeable, and the need for which is made
clear below.

A function definition begins with a @ (define ...) directive. For vertical functions, this is the only ele-
ment in a line.

The define symbol must be followed by a symbol, which is the name of the function being defined. After

the symbol, there is a parenthesized optional argument list. If there is no such list, or if the list is specified
as () or the symbol nil then the function has no parameters. Examples of valid define syntax are:

@ (define foo0)
@ (define bar ())
@ (define match (a b c))

If the define directive is followed by more material on the same line, then it defines a horizontal func-
tion:

Q@ (define match-x) x@ (end)

If the define is the sole element in a line, then it is a vertical function, and the function definition continues
below:

@ (define match-x)

@ (end)
The difference between the two is that a horizontal function matches characters within a line, whereas a
vertical function matches lines within a stream. The former mat ch—-x matches the character x, advancing
to the next character position. The latter mat ch—x matches a line consisting of the character x, advancing

to the next line.

Material between @ (define) and @ (end) is the function body. The define directive may be followed
directly by the @ (end) directive, in which case the function has an empty body.

Utility Commands 2021-07-12 75

TXR(1) TXR Programming Language TXR(1)

Functions may be nested within function bodies. Such local functions have dynamic scope. They are visible
in the function body in which they are defined, and in any functions invoked from that body.

The body of a function is an anonymous block. (See Blocks above.)

7.5.3 Two Forms of The Horizontal Function

If a horizontal function is defined as the only element of a line, it may not be followed by additional mate-
rial. The following construct is erroneous:

@ (define horiz (x))@foo:W@bar@(end)lalala

This kind of definition is actually considered to be in the vertical context, and like other directives that have
special effects and that do not match anything, it does not consume a line of input. If the above syntax were
allowed, it would mean that the line would not only define a function but also match 1alala. This would,
in turn, would mean that the @ (define) ... Q@ (end) is actually in horizontal mode, and so it matches a
span of zero characters within a line (which means that is would require a line of input to match: a surpris-
ing behavior for a nonmatching directive!)

A horizontal function can be defined in an actual horizontal context. This occurs if its is in a line where it is
preceded by other material. For instance:

XQ@ (define fun)...Q@(end)Y

This is a query line which must match the text XY. It also defines the function fun. The main use of this
form is for nested horizontal functions:

@ (define fun)@(define local_fun)...@(end)@ (end)

7.5.4 Vertical-Horizontal Overloading

A function of the same name may be defined as both vertical and horizontal. Both functions are available
at the same time. Which one is used by a call is resolved by context. See the section Vertical Versus Hori-
zontal Calls below.

7.5.5 Call Syntax

A function is invoked by compound directive whose first symbol is the name of that function. Additional
elements in the directive are the arguments. Arguments may be symbols, or other objects like string and
character literals, quasiliterals ore regular expressions.

Example:
code: @ (define pair (a b))
Qa @b
Q@ (end)
@(pair first second)
@ (pair "ice" cream)
data: one two
ice milk
result: first="one"

second="two"
cream="milk"

The first call to the function takes the line "one two". The parameter a takes "one" and parameter b

Utility Commands 2021-07-12 76

TXR(1) TXR Programming Language TXR(1)

takes "two". These are rebound to the arguments first and second. The second call to the function
binds the a parameter to the word "ice", and the b is unbound, because the corresponding argument
cream is unbound. Thus inside the function, a is forced to match ice. Then a space is matched and b
collects the text "milk". When the function returns, the unbound "cream" variable gets this value.

If a symbol occurs multiple times in the argument list, it constrains both parameters to bind to the same
value. That is to say, all parameters which, in the body of the function, bind a value, and which are all
derived from the same argument symbol must bind to the same value. This is settled when the function ter-
minates, not while it is matching. Example:

code: @ (define pair (a b))
Qa @b
@ (end)
@ (pair same same)
data: one two
result: [query fails]

Here the query fails because a and b are effectively proxies for the same unbound variable same and are
bound to different values, creating a conflict which constitutes a match failure.

7.5.6 Vertical Versus Horizontal Calls

A function call which is the only element of the query line in which it occurs is ambiguous. It can go either
to a vertical function or to the horizontal one. If both are defined, then it goes to the vertical one.

Example:
code: @ (define which (x))@(bind x "horizontal")@ (end)
@ (define which (x))
Q@ (bind x "vertical")
@ (end)
@ (which fun)
result: fun="vertical"

Not only does this call go to the vertical function, but it is in a vertical context.

If only a horizontal function is defined, then that is the one which is called, even if the call is the only ele-
ment in the line. This takes place in a horizontal character-matching context, which requires a line of input
which can be traversed:

Example:

code: @ (define which (x))@(bind x "horizontal")(@ (end)
@ (which fun)

data: ABC

result: [query fails]

The query fails because since @ (which fun) is in horizontal mode, it matches characters in a line. Since
the function body consists only of @ (bind ...) which doesn’t match any characters, the function call
requires an empty line to match. The line ABC is not empty, and so there is a matching failure. The follow-
ing example corrects this:

Example:

code: Q@ (define which (x))@(bind x "horizontal")@ (end)
@ (which fun)

Utility Commands 2021-07-12 77

TXR(1) TXR Programming Language TXR(1)

data: [empty line]
result: fun="horizontal"

A call made in a clearly horizontal context will prefer the horizontal function, and only fall back on the ver-
tical one if the horizontal one doesn’t exist. (In this fallback case, the vertical function is called with empty
data; it is useful for calling vertical functions which process arguments and produce values.)

In the next example, the call is followed by trailing material, placing it in a horizontal context. Leading
material will do the same thing:

Example:
code: Q@ (define which (x))@(bind x "horizontal")@ (end)
@ (define which (x))
@ (bind x "vertical")
@ (end)
@ (which fun)B
data: B
result: fun="horizontal"
7.5.7 Local Variables

As described earlier, variables bound in a function body which are not parameters of the function are dis-
carded when the function returns. However, that, by itself, doesn’t make these variables local, because pat-
tern functions have visibility to all variables in their calling environment. If a variable x exists already when
a function is called, then an attempt to bind it inside a function may result in a failure. The local direc-
tive must be used in a pattern function to list which variables are local.

Example:

@ (define path (path))@\
@(local x y)@\
@ (cases) @\
(@ (path x))@Q(path y)@(bind path (@x)Q@y")@\
@ (or) @\
@{x /[.,;71211" \t\f\v]/}@(path y)@ (bind path ‘@x@y") e\
@ (or) @\
@{x /1" .,;7120\t\f\v]/}@ (path y)@ (bind path ‘@x@y") @\
@ (or) @\
@ (bind path "")Q@\
@ (end) @\
@ (end)

This is a horizontal function which matches a path, which lands into four recursive cases. A path can be
parenthesized path followed by a path; it can be a certain character followed by a path, or it can be empty

This function ensures that the variables it uses internally, x and y, do not have anything to do with any
inherited bindings for x and y.

Note that the function is recursive, which cannot work without x and y being local, even if no such bind-
ings exist prior to the top-level invocation of the function. The invocation @ (path x) causes x to be
bound, which is visible inside the invocation @ (path vy), but that invocation needs to have its own bind-
ing of x for local use.

Utility Commands 2021-07-12 78

TXR(1) TXR Programming Language TXR(1)

7.5.8 Nested Functions

Function definitions may appear in a function. Such definitions are visible in all functions which are
invoked from the body (and not necessarily enclosed in the body). In other words, the scope is dynamic, not
lexical. Inner definitions shadow outer definitions. This means that a caller can redirect the function calls
that take place in a callee, by defining local functions which capture the references.

Example:

code: Q@ (define which)
@ (fun)
@ (end)

@ (define fun)

@ (output)
top-level fun!
@ (end)

@ (end)

Q@ (define callee)
@ (define fun)
@ (output)
local fun!

@ (end)

@ (end)

@ (which)

@ (end)
@(callee)

@ (which)

output: local fun!
top-level fun!

Here, the function which is defined which calls fun. A top-level definition of fun is introduced which
outputs "top-level fun!". The function callee provides its own local definition of fun which
outputs "local fun!" before calling which. When callee is invoked, it calls which, whose
@ (fun) call is routed to callee’s local definition. When which is called directly from the top level, its
fun call goes to the top-level definition.

7.5.9 Indirect Calls

Function indirection may be performed using the call directive. If fun-expr is an Lisp expression
which evaluates to a symbol, and that symbol names a function which takes no arguments, then

@(call fun-expr)
may be used to invoke the function. Additional expressions may be supplied which specify arguments.

Example 1:
@ (define foo (arg))
@ (bind arg "abc")
@ (end)
@(call ’'foo b)

In this example, the effect is that foo is invoked, and b ends up bound to "abc".

The call directive here uses the ’ foo expression to calculate the name of the function to be invoked.
(See the quote operator).

This particular call expression can just be replaced by the direct invocation syntax @ (foo b).

Utility Commands 2021-07-12 79

TXR(1)

TXR Programming Language TXR(1)

The power of call lies in being able to specify the function as a value which comes from elsewhere in the
program, as in the following example.

@(define foo (arqg))
bind arg "abc")
end)
bind £ @' foo)

(
@
@
@
@(call £ b)

(
(
(
(

Here the call directive obtains the name of the function from the £ variable.

Note that function names are resolved to functions in the environment that is apparent at the point in execu-
tion where the call takes place. The directive @ (call f args ...) is precisely equivalent to @ (s
args ...) if, at the point of the call, f is a variable which holds the symbol s and symbol s is defined
as a function. Otherwise it is erroneous.

7.6 Modularization

7.6.1 The 1oad and include directives

The syntax of the 1oad and include directives is:

@ (load expr)
@(include expr)

Where expr is a Lisp expression that evaluates to a string giving the path of the file to load.
Firstly, the path given by expr is converted to an effective path, as follows.

If the value of the *1oad-path* variable has a current value which is not nil and the path given in
expr is pure relative according to the pure-rel-path-p function, then the effective path is interpreted
taken relative to the directory portion of the path which is stored in *1oad-path*.

If ¥1load-path* is nil, or the load path is not pure relative, then the path is taken as-is as the effective
path.

Next, an attempt is made to open the file for processing, in almost exactly the same manner as by the TXR
Lisp function 1oad. The difference is that if the effective path is unsuffixed, then the . txr suffix is added
to it, and that resulting path is tried first, and if it succeeds, then the file is treated as TXR Pattern Language
syntax. If that fails, then the suffix .t 1o is tried, and so forth, as described for the 1oad function.

Both the 1oad and include directives bind the *1oad-path* variable to the path of the loaded file
just before parsing syntax from it, The *package* variable is also given a new dynamic binding, whose
value is the same as the existing binding. These bindings are removed when the load operation completes,
restoring the prior values of these variables.

If the file opened for processing is TXR Lisp source, or a compiled TXR Lisp file, then it is processed in
the manner described for the 1oad function.

Different requirements apply to the processing of the file under the 1oad and include directives.

The include directive performs the processing of the file at parse time. If the file being processed is TXR
Pattern Language, then it is parsed, and then its syntax replaces the include directive, as if it had origi-
nally appeared in its place. If a TXR Lisp source or a compiled TXR Lisp file is processed by include
then the include directive is removed from the syntax.

Utility Commands 2021-07-12 80

TXR(1) TXR Programming Language TXR(1)

The load directive performs the processing of the file at evaluation time. Evaluation time occurs after a
TXR program is read from beginning to end and parsed. That is to say, when a TXR query is parsed, any
embedded @ (load ...) forms in it are parsed and constitute part of its syntax tree. They are executed
when that query is executed, whenever its execution reaches those 1oad directives. When the 1oad direc-
tive processes TXR Pattern Language syntax, it parses the file in its entirety and then executes that file’s
directives against the current input position. Repeated executions of the same load directive result in
repeated processing of the file.

Note: the include directive is useful for loading TXR files which contain Lisp macros which are needed
by the parent program. The parent program cannot use load to bring in macros because macros are
required during expansion, which takes place prior to evaluation time, whereas 1oad doesn’t execute until
evaluation time.

See also: the self-path, stdlib and *1oad-path* variables in TXR Lisp.

7.7 Output
7.7.1 Introduction

A TXR query may perform custom output. Output is performed by output clauses, which may be
embedded anywhere in the query, or placed at the end. Output occurs as a side effect of producing a part of
a query which contains an @ (output) directive, and is executed even if that part of the query ultimately
fails to find a match. Thus output can be useful for debugging. An output clause specifies that its output
goes to a file, pipe, or (by default) standard output. If any output clause is executed whose destination is
standard output, TXR makes a note of this, and later, just prior to termination, suppresses the usual printing
of the variable bindings or the word false.

7.7.2 The output directive
The syntax of the @ (output) directive is:

@ (output [destination 1 { bool-keyword | keyword value }*)

one or more output directives or lines

@ (end)
If the directive has arguments, then the first one is evaluated. If it is an object other than a keyword symbol,
then it specifies the optional destination. Any remaining arguments after the optional destination are
the keyword list. If the destination is missing, then the entire argument list is a keyword list.
The destination argument, if present, is treated as a TXR Lisp expression and evaluated. The result-
ing value is taken as the output destination. The value may be a string which gives the pathname of a file to

open for output. Otherwise, the destination must be a stream object.

The keyword list consists of a mixture of Boolean keywords which do not have an argument, or keywords
with arguments.

The following Boolean keywords are supported:

:nothrow
The output directive throws an exception if the output destination cannot be opened, unless the
:nothrow keyword is present, in which case the situation is treated as a match failure.

Note that since command pipes are processes that report errors asynchronously, a failing command

Utility Commands 2021-07-12 81

TXR(1)

TXR Programming Language TXR(1)

will not throw an immediate exception that can be suppressed with :nothrow. This is for syn-
chronous errors, like trying to open a destination file, but not having permissions, etc.

:append

This keyword is meaningful for files, specifying append mode: the output is to be added to the end
of the file rather than overwriting the file.

The following value keywords are supported:

:filter

:into

The argument can be a symbol, which specifies a filter to be applied to the variable substitutions
occurring within the output clause. The argument can also be a list of filter symbols, which
specifies that multiple filters are to be applied, in left-to-right order.

See the later sections Output Filtering below, and The Deffilter Directive.

The argument of : into is a symbol which denotes a variable. The output will go into that vari-
able. If the variable is unbound, it will be created. Otherwise, its contents are overwritten unless
the : append keyword is used. If : append is used, then the new content will be appended to the
previous content of the variable, after flattening the content to a list, as if by the flatten direc-
tive.

:named

The argument of :named is a symbol which denotes a variable. The file or pipe stream which is
opened for the output is stored in this variable, and is not closed at the end of the output block.
This allows a subsequent output block to continue output on the same stream, which is possible
using the next two keywords, :continue or : finish. A new binding is established for the
variable, even if it already has an existing binding.

:continue

A destination should not be specified if : continue is used. The argument of : continue is an
expression, such as a variable name, that evaluates to a stream object. That stream object is used
for the output block. At the end of the output block, the stream is flushed, but not closed. A usage
example is given in the documentation for the Close Directive below.

:finish

A destination should not be specified if : finish is used. The argument of : finish is an
expression, such as a variable name, that evaluates to a stream object. That stream object is used
for the output block. At the end of the output block, the stream is closed. An example is given in
the documentation for the Close Directive below.

7.7.3 Output Text

Text in an output clause is not matched against anything, but is output verbatim to the destination file,
device or command pipe.

7.7.4 Output Variables

Variables occurring in an output clause do not match anything; instead their contents are output.

A variable being output can be any object. If it is of a type other than a list or string, it will be converted to
a string as if by the tostring function in TXR Lisp.

Utility Commands 2021-07-12 82

TXR(1) TXR Programming Language TXR(1)

A list is converted to a string in a special way: the elements are individually converted to a string and then
they are catenated together. The default separator string is a single space: an alternate separation can be
specified as an argument in the brace substitution syntax. Empty lists turn into an empty string.

Lists may be output within @ (repeat) or @ (rep) clauses. Each nesting of these constructs removes one
level of nesting from the list variables that it contains.

In an output clause, the @ { name number} variable syntax generates fixed-width field, which contains
the variable’s text. The absolute value of the number specifies the field width. For instance —20 and 20
both specify a field width of twenty. If the text is longer than the field, then it overflows the field. If the text
is shorter than the field, then it is left-adjusted within that field, if the width is specified as a positive num-
ber, and right-adjusted if the width is specified as negative.

An output variable may specify a filter which overrides any filter established for the output clause. The syn-
tax for thisis @ {NAME :filter filterspec}. The filter specification syntax is the same as in the
output clause. See Output Filtering below.

7.7.5 Output Variables: Indexing
Additional syntax is supported in output variables that does not appear in pattern-matching variables.
A square bracket index notation may be used to extract elements or ranges from a variable, which works

with strings, vectors and lists. Elements are indexed from zero. This notation is only available in brace-
enclosed syntax, and looks like this:

@{name[expr]}
Extract the element at the position given by expr.

@{name[exprl..expr2]}
Extract a range of elements from the position given by expri, up to one position less than the
position given by expr2.

If the variable is a list, it is treated as a list substitution, exactly as if it were the value of an unsub-
scripted list variable. The elements of the list are converted to strings and catenated together with

a separator string between them, the default one being a single space.

An alternate character may be given as a string argument in the brace notation.

Example:

@ (bind a ("a" "b" "c" "d"))

@ (output)
@{af1..31 ","™ 10}
@ (end)

The above produces the text "b, c" in a field 10 spaces wide. The [1..3] argument extracts a range of
a; the ", " argument specifies an alternate separator string, and 10 specifies the field width.

7.7.6 Output Substitutions

The brace syntax has another syntactic and semantic extension in output clauses. In place of the symbol,
an expression may appear. The value of that expression is substituted.

Example:

Utility Commands 2021-07-12 83

TXR(1)

TXR Programming Language TXR(1)
@(bind a "foo")
@ (output)
@{‘Qa:" -10}
Here, the quasiliteral expression ‘@a: * is evaluated, producing the string "foo:". This string is printed

right-adjusted in a 10 character field.

7.7.7 The repeat directive

The repeat directive generates repeated text from a "boilerplate”, by taking successive elements from
lists. The syntax of repeat is like this:

@ (repeat)
main clause material, required
special clauses, optional

@ (end)

repeat has four types of special clauses, any of which may be specified with empty contents, or omitted
entirely. They are described below.

repeat takes arguments, also described below.

All of the material in the main clause and optional clauses is examined for the presence of variables. If
none of the variables hold lists which contain at least one item, then no output is performed, (unless the
repeat specifies an @ (empty) clause, see below). Otherwise, among those variables which contain
nonempty lists, repeat finds the length of the longest list. This length of this list determines the number of
repetitions, R.

If the repeat contains only a main clause, then the lines of this clause is output R times. Over the first
repetition, all of the variables which, outside of the repeat, contain lists are locally rebound to just their first
item. Over the second repetition, all of the list variables are bound to their second item, and so forth. Any
variables which hold shorter lists than the longest list eventually end up with empty values over some repe-
titions.

Example: if the list A holds "1", "2" and "3"; the list B holds "A"™, "B"; and the variable C holds "X",
then

@ (repeat)
>> @C
>> @A @B
@ (end)

will produce three repetitions (since there are two lists, the longest of which has three items). The output is:

>> X
>> 1 A
>> X
>> 2 B
>> X

Utility Commands 2021-07-12 84

TXR(1) TXR Programming Language TXR(1)

>> 3

The last line has a trailing space, since it is produced by "@A @B", where B has an empty value. Since C is
not a list variable, it produces the same value in each repetition.

The special clauses are:

@ (single)
If the repeat produces exactly one repetition, then the contents of this clause are processed for
that one and only repetition, instead of the main clause or any other clause which would otherwise
be processed.

@(first)
The body of this clause specifies an alternative body to be used for the first repetition, instead of
the material from the main clause.

@(last)
The body of this clause is used instead of the main clause for the last repetition.

@ (empty)
If the repeat produces no repetitions, then the body of this clause is output. If this clause is absent
or empty, the repeat produces no output.

@ (mod n m)
The forms n and m are Lisp expressions that evaluate to integers. The value of m should be
nonzero. The clause denoted this way is active if the repetition modulo m is equal to n. The first
repetition is numbered zero. For instance the clause headed by @ (mod 0 2) will be used on
repetitions 0, 2,4, 6, ... and @ (mod 1 2) will be used on repetitions 1, 3, 5, 7, ...

@ (modlast n m)
The meaning of n and m is the same as in @ (mod n m), but one more condition is imposed. This
clause is used if the repetition modulo m is equal to n, and if it is the last repetition.

The precedence among the clauses which take an iteration is: single > first > modlast >
last > mod > main. That is, whenever two or more of these clauses can apply to a repetition, then
the leftmost one in this precedence list will be selected. It is possible for all these clauses to be viable for
processing the same repetition. If a repeat occurs which has only one repetition, then that repetition is
simultaneously the first, only and last repetition. Moreover, it also matches (mod 0 m) and, because it is
the last repetition, it matches (modlast 0 m). In this situation, if there is a @ (single) clause
present, then the repetition shall be processed using that clause. Otherwise, if there isa @ (first) clause
present, that clause is activated. Failing that, @ (modlast) is used if there is such a clause, featuring an n
argument of zero. If there isn’t, then the @ (1ast) clause is considered, if present. Otherwise, the @ (mod)
clause is considered if present with an n argument of zero. Otherwise, none of these clauses are present or
applicable, and the repetition is processed using the main clause.

The @ (empty) clause does not appear in the above precedence list because it is mutually exclusive with
respect to the others: it is processed only when there are no iterations, in which case even the main clause
isn’t active.
The @ (repeat) clause supports arguments.

@ (repeat

[:counter {symbol | (symbol expr)}]

Utility Commands 2021-07-12 85

TXR(1) TXR Programming Language TXR(1)

[:vars ({symbol | (symbol expr)}*)1)

The : counter argument designates a symbol which will behave as an integer variable over the scope of
the clauses inside the repeat. The variable provides access to the repetition count, starting at zero, incre-
menting with each repetition. If the the argument is given as (symbol expr) then expr is a Lisp
expression whose value is taken as a displacement value which is added to each iteration of the counter. For
instance : counter (c 1) specifies a counter ¢ which counts from 1.

The :vars argument specifies a list of variable name symbols symbol or else pairs of the form (sym-
bol init-form) consisting of a variable name and Lisp expression. Historically, the former syntax
informed repeat about references to variables contained in Lisp code. This usage is no longer necessary
as of TXR 243, since the repeat construct walks Lisp code, identifying all free variables. The latter syn-
tax introduces a new pattern variable binding for symbol over the scope of the repeat construct. The
init-form specifies a Lisp expression which is evaluated to produce the binding’s value.

The repeat directive then processes the list of variables, selecting from it those which have a binding,
either a previously existing binding or the one just introduced. For each selected variable, repeat will
assume that the variable occurs in the repeat block and contains a list to be iterated.

The variable binding syntax supported by :vars of the form (symbol init-form) provides a solu-
tion for situations when it is necessary to iterate over some list, but that list is the result of an expression,
and not stored in any variable. A repeat block iterates only over lists emanating from variables; it does not
iterate over lists pulled from arbitrary expressions.

Example: output all file names matching the * . t xr pattern in the current directory:

@ (output)

@ (repeat :vars ((name (glob "*.txr"))))
@name

@ (end)

@ (end)

Prior to TXR 243, the simple variable-binding syntax supported by :vars of the form symbol was
needed for situations in which TXR Lisp expressions which referenced variables were embedded in
@ (repeat) blocks. Variable references embedded in Lisp code were not identified in @ (repeat). For
instance, the following produced no output, because no variables were found in the repeat body:

@ (bind trigraph ("abc" "def" "ghi"))

@ (output)

@ (repeat)

@ (reverse trigraph)

@ (end)

@ (end)

There is a reference to t rigraph but it’s inside the (reverse trigraph) Lisp expression that was
not processed by repeat. The solution was to mention t rigraph in the : vars construct:

bind trigraph ("abc" "def" "ghi"))
output)
repeat :vars (trigraph))

@ (
@ (
@ (
@ (reverse trigraph)
@ (
@ (

Utility Commands 2021-07-12 86

TXR(1) TXR Programming Language TXR(1)

Then the repeat block would iterate over t rigraph, producing the output

cba
fed
igh

This workaround is no longer required as of TXR 243; the output is produced by the first example, without
1vars.

7.7.8 Nested repeat directives

If a repeat clause encloses variables which hold multidimensional lists, those lists require additional
nesting levels of repeat (or rep). It is an error to attempt to output a list variable which has not been
decimated into primary elements via a repeat construct.

Suppose that a variable X is two-dimensional (contains a list of lists). X must be nested twice in a repeat.
The outer repeat will traverse the lists contained in X. The inner repeat will traverse the elements of
each of these lists.

A nested repeat may be embedded in any of the clauses of a repeat, not only in the main clause.

7.7.9 The rep directive
The rep directive is similar to repeat. Whereas repeat is line-oriented, rep generates material within
a line. It has all the same clauses, but everything is specified within one line:

@(rep) ... main material special clauses ...@(end)

More than one @ (rep) can occur within a line, mixed with other material. A @ (rep) can be nested
within a @ (repeat) or within another @ (rep).

Also, @ (rep) accepts the same : counter and : vars arguments.

7.7.10 repeat and rep Examples

Example 1: show the list L in parentheses, with spaces between the elements, or the word EMPTY if the list
is empty:

@ (output)
@(rep) @L @ (single) (@L)@ (first) (CL @ (last)QL)Q (empty)EMPTY(Q (end)
@ (end)

Here, the @ (empty) clause specifies EMPTY. So if there are no repetitions, the text EMPTY is produced.
If there is a single item in the list L, then @ (single) (@L) produces that item between parentheses. Oth-
erwise if there are two or more items, the first item is produced with a leading parenthesis followed by a
space by @ (first) (QL and the last item is produced with a closing parenthesis: @ (last) @L). All
items in between are emitted with a trailing space by the main clause: @ (rep) @L.

Example 2: show the list L like Example 1 above, but the empty listis ().
@ (output)
(@ (rep) QL @(last)@L@(end))
@ (end)

This is simpler. The parentheses are part of the text which surrounds the @ (rep) construct, produced

Utility Commands 2021-07-12 87

TXR(1) TXR Programming Language TXR(1)

unconditionally. If the list L is empty, then @ (rep) produces no output, resulting in (). If the list L has
one or more items, then they are produced with spaces each one, except the last which has no space. If the
list has exactly one item, then the @ (1last) applies to it instead of the main clause: it is produced with no
trailing space.

7.7.11 The close directive

The syntax of the close directive is:
@(close expr)

Where expr evaluates to a stream. The close directive can be used to explicitly close streams created
using @ (output ... :named var) syntax, asan alternative to @ (output :finish expr).

Examples:
Write two lines to "foo . txt" over two output blocks using a single stream:

@ (output "foo.txt" :named foo)
Hello,

@ (end)

@ (output :continue foo)

world!

@ (end)

@ (close foo0)

The same as above, using : £inish rather than : continue so that the stream is closed at the end of the
second block:

@ (output "foo.txt" :named foo)
Hello,

@ (end)

@ (output :finish foo)

world!

@ (end)

7.7.12 Output Filtering

Often it is necessary to transform the output to preserve its meaning under the convention of a given data
format. For instance, if a piece of text contains the characters < or >, then if that text is being substituted
into HTML, these should be replaced by &1t ; and > ;. This is what filtering is for. Filtering is applied
to the contents of output variables, not to any template text. TXR implements named filters. Built-in filters
are named by keywords, given below. User-defined filters are possible, however. See notes on the deffilter
directive below.

Instead of a filter name, the syntax (fun name) can be used. This denotes that the function called name
is to be used as a filter. This is described in the next section Function Filters below.

Built-in filters named by keywords:

:tohtml
Filter text to HTML, representing special characters using HTML ampersand sequences. For
instance > is replaced by > ;.

Utility Commands 2021-07-12 88

TXR(1)

TXR Programming Language TXR(1)

:tohtml~*

Filter text to HTML, representing special characters using HTML ampersand sequences. Unlike
:tohtml, this filter doesn’t treat the single and double quote characters. It is not suitable for pre-
paring HTML fragments which end up inserted into HTML tag attributes.

:fromhtml

Filter text with HTML codes into text in which the codes are replaced by the corresponding char-
acters. For instance > ; is replaced by >.

:upcase

Convert the 26 lowercase letters of the English alphabet to uppercase.

:downcase

Convert the 26 uppercase letters of the English alphabet to lowercase.

:frompercent

Decode percent-encoded text. Character triplets consisting of the % character followed by a pair of
hexadecimal digits (case insensitive) are are converted to bytes having the value represented by the
hexadecimal digits (most significant nybble first). Sequences of one or more such bytes are treated
as UTF-8 data and decoded to characters.

:topercent

Convert to percent encoding according to RFC 3986. The text is first converted to UTF-8 bytes.
The bytes are then converted back to text as follows. Bytes in the range 0 to 32, and 127 to 255
(note: including the ASCII DEL), bytes whose values correspond to ASCII characters which are
listed by RFC 3986 as being in the "reserved set", and the byte value corresponding to the ASCII
% character are encoded as a three-character sequence consisting of the % character followed by
two hexadecimal digits derived from the byte value (most significant nybble first, upper case). All
other bytes are converted directly to characters of the same value without any such encoding.

:fromurl

Decode from URL encoding, which is like percent encoding, except that if the unencoded + char-
acter occurs, it is decoded to a space character. The $20 sequence still decodes to space, and $2B
to the + character.

:tourl

Encode to URL encoding, which is like percent encoding except that a space maps to + rather than
%$20. The + character, being in the reserved set, encodes to $2B.

:frombase64

Decode from the Base 64 encoding described in RFC 4648, section 5.

:tobase64

Encode to the Base 64 encoding described in RFC 4648, section 5.

:frombase64durl

Decode from the Base64 encoding described in RFC 4648, section 6. This uses the URL and file-
name safe alphabet, in which the + (plus) and / (slash) characters used in regular Base 64 are
respectively replaced with — (minus) and _ (underscore).

Utility Commands 2021-07-12 89

TXR(1)

TXR Programming Language TXR(1)
:tobase64url
Encode to the Base 64 encoding described in RFC 4648, section 6. See :frombase64url
above.
:tonumber

Converts strings to numbers. Strings that contain a period, e or E are converted to floating point as
if by the Lisp function flo-str. Otherwise they are converted to integer as if using int-str
with a radix of 10. Non-numeric junk results in the object nil.

:toint
Converts strings to integers as if using int-str with a radix of 10. Non-numeric junk results in
the object nil.

:tofloat
Converts strings to floating-point values as if using the function flo-str. Non-numeric junk
results in the object nil.

:hextoint
Converts strings to integers as if using int-str with a radix of 16. Non-numeric junk results in
the object nil.

Examples:

To escape HTML characters in all variable substitutions occurring in an output clause, specify : filter
:tohtml in the directive:

@ (output :filter :tohtml)

@ (end)
To filter an individual variable, add the syntax to the variable spec:

@ (output)

@{x :filter :tohtml}

@ (end)
Multiple filters can be applied at the same time. For instance:

@ (output)

@{x :filter (:upcase :tohtml)}

@ (end)
This will fold the contents of x to uppercase, and then encode any special characters into HTML. Beware
of combinations that do not make sense. For instance, suppose the original text is HTML, containing codes
like squot;. The compound filter (:upcase :fromhtml) will not work because squot; will turn
to " which no longer be recognized by the : fromhtml filter, since the entity names in HTML
codes are case-sensitive.

Capture some numeric variables and convert to numbers:

@date @time @temperature (@pressure
@Q(filter :tofloat temperature pressure)

Utility Commands 2021-07-12 90

TXR(1) TXR Programming Language TXR(1)

@;; temperature and pressure can now be used in calculations

7.7.13 Function Filters
A function can be used as a filter. For this to be possible, the function must conform to certain rules:
1. The function must take two special arguments, which may be followed by additional arguments.

2. When the function is called, the first argument will be bound to a string, and the second argument
will be unbound. The function must produce a value by binding it to the second argument. If the
filter is to be used as the final filter in a chain, it must produce a string.

For instance, the following is a valid filter function:

@ (define foo_to_bar (in out))
@ (next :string in)
@ (cases)

foo

@ (bind out "bar")
@ (or)

@ (bind out in)

@ (end)

@ (end)

This function binds the out parameter to "bar" if the in parameter is "foo", otherwise it binds the out
parameter to a copy of the in parameter. This is a simple filter.

To use the filter, use the syntax (:fun foo_to_bar) in place of a filter name. For instance in the
bind directive:

@ (bind "foo" "bar" :1filt (:fun foo_to_bar))
The above should succeed since the left side is filtered from "foo" to "bar", so that there is a match.
Function filters can be used in a chain:
@ (output :filter (:downcase (:fun foo_to_bar) :upcase))
@ (end)
Here is a split function which takes an extra argument which specifies the separator:
@ (define split (in out sep))
@ (next :list in)
@ (coll)@(maybe)@token@sep@ (or)@token@ (end) @ (end)
@ (bind out token)
@

(end)

Furthermore, note that it produces a list rather than a string. This function separates the argument in into
tokens according to the separator text carried in the variable sep.

Here is another function, join, which catenates a list:
@ (define join (in out sep))

@ (output :into out)
@ (rep)@in@sep@(last)@in@ (end)

Utility Commands 2021-07-12 91

TXR(1) TXR Programming Language TXR(1)

@ (end)
@ (end)

Now here is these two being used in a chain:

@ (bind text "how,are,you")

@ (output :filter (:fun split ",") (:fun join "-"))
@text

@ (end)

Output:
how—-are-you

When the filter invokes a function, it generates the first two arguments internally to pass in the input value
and capture the output. The remaining arguments from the (:fun ...) construct are also passed to the
function. Thus the string objects ", " and "—" are passed as the sep argument to split and join.

Note that split puts out a list, which join accepts. So the overall filter chain operates on a string: a
string goes into split, and a string comes out of join.

7.7.14 The deffilter directive

The deffilter directive allows a query to define a custom filter, which can then be used in output
clauses to transform substituted data.

The syntax of deffilter is illustrated in this example:

code: Q@ (deffilter rotl3
("a"
"b" n

"

"d"

O‘Q)N'<><2<IC:F?U)H.Q"OO’J

N X = <d4cduh,OOoOSB 83 R mw 5Q Mo

")
()
()
()
()
()
()
()
()
()
()
()
()
()
()
()
()
()
()
()
()
()
()
()
()
()

S b xU D Q MO QO

Utility Commands 2021-07-12 92

TXR(1)

TXR Programming Language TXR(1)

@(collect)

@line

@ (end)

@ (output :filter rotl3)
@ (repeat)

@line

@ (end)

@ (end)

data: hey there!
output: url gurer!

The deffilter symbol must be followed by the name of the filter to be defined, followed by bind
expressions which evaluate to lists of strings. Each list must be at least two elements long and specifies one
or more texts which are mapped to a replacement text. For instance, the following specifies a telephone
keypad mapping from uppercase letters to digits.

@(deffilter alpha_to_phone ("E" "0")
("Jg"™ "N" "Qm" "1")
("R" "W" "X" "2M)
("D" "s" "y" "3m)
("™ "T" "4n)
("A" "M" "5")
("cm omIvomynoven
("B" "K" "u" "7"
("L" "o" "p" "g"
("G" "H" "z" "9"

@ (deffilter foo (‘@a‘ ‘@b‘) ("c" ‘->@d%))

Q@ (bind x ("from" "to"))
@ (bind y ("___" "+++"))
@(deffilter sub x y)

The last deffilter has the same effect as the @ (deffilter sub ("from" "to") ("—---"
"+++")) directive.

Filtering works using a longest match algorithm. The input is scanned from left to right, and the longest
piece of text is identified at every character position which matches a string on the left-hand side, and that
text is replaced with its associated replacement text. The scanning then continues at the first character after
the matched text.

If none of the strings matches at a given character position, then that character is passed through the filter
untranslated, and the scan continues at the next character in the input.

Filtering is not in-place but rather instantiates a new text, and so replacement text is not re-scanned for
more replacements.

If a filter definition accidentally contains two or more repetitions of the same left-hand string with different
right-hand translations, the later ones take precedence. No warning is issued.

7.7.15 The £ilter directive

The syntax of the filter directive is:

Utility Commands 2021-07-12 93

TXR(1)

TXR Programming Language TXR(1)

@Q(filter FILTER { VAR }+)

A filter is specified, followed by one or more variables whose values are filtered and stored back into each
variable.

Example: convert a, b, and c¢ to uppercase and HTML encode:

@Q(filter (:upcase :tohtml) a b c)

7.8 Exceptions

7.8.1 Introduction

The exceptions mechanism in TXR is another disciplined form of nonlocal transfer, in addition to the
blocks mechanism (see Blocks above). Like blocks, exceptions provide a construct which serves as the tar-
get for a dynamic exit. Both blocks and exceptions can be used to bail out of deep nesting when some con-
dition occurs. However, exceptions provide more complexity. Exceptions are useful for error handling, and
TXR in fact maps certain error situations to exception control transfers. However, exceptions are not inher-
ently an error-handling mechanism; they are a structured dynamic control transfer mechanism, one of
whose applications is error handling.

An exception control transfer (simply called an exception) is always identified by a symbol, which is its
type. Types are organized in a subtype-supertype hierarchy. For instance, the file-error exception
type is a subtype of the error type. This means that a file error is a kind of error. An exception handling
block which catches exceptions of type error will catch exceptions of type file-error, but a block
which catches file-error will not catch all exceptions of type error. A query-error is a kind of
error, but not a kind of file-error. The symbol t is the supertype of every type: every exception type
is considered to be a kind of t. (Mnemonic: t stands for type, as in any type).

Exceptions are handled using @ (catch) clauses within a @ (try) directive.
In addition to being useful for exception handling, the @ (try) directive also provides unwind protection

by means of a @ (finally) clause, which specifies query material to be executed unconditionally when
the t ry clause terminates, no matter how it terminates.

7.8.2 The t ry directive

The general syntax of the t ry directive is

@(try)
main clause, required
optional catch clauses
optional finally clause
@ (end)
A catch clause looks like:

@ (catch TYPE [PARAMETERS])

and also this simple form:

@ (catch)

Utility Commands 2021-07-12 94

TXR(1) TXR Programming Language TXR(1)

which catches all exceptions, and is equivalent to @ (catch t).
A finally clause looks like:

@(finally)

The main clause may not be empty, but the catch and finally may be.

A try clause is surrounded by an implicit anonymous block (see Blocks section above). So for instance, the
following is a no-op (an operation with no effect, other than successful execution):

@(try)
@ (accept)
@ (end)

The @ (accept) causes a successful termination of the implicit anonymous block. Execution resumes
with query lines or directives which follow, if any.

try clauses and blocks interact. For instance, an accept from within a try clause invokes a finally.

code: @ (block foo)
@ (try)
@ (accept foo)
@ (finally)
@ (output)
bye!
@ (end)
@ (end)

output: bye!

How this works: the try block’s main clause is @ (accept foo). This causes the enclosing block
named foo to terminate, as a successful match. Since the t ry is nested within this block, it too must ter-
minate in order for the block to terminate. But the try has a finally clause, which executes uncondition-
ally, no matter how the try block terminates. The finally clause performs some output, which is seen.

Note that finally interacts with accept in subtle ways not revealed in this example; they are docu-
mented in the description of accept under the block directive documentation.

7.8.3 The finally clause

A try directive can terminate in one of three ways. The main clause may match successfully, and possibly
yield some new variable bindings. The main clause may fail to match. Or the main clause may be termi-
nated by a nonlocal control transfer, like an exception being thrown or a block return (like the block foo
example in the previous section).

No matter how the t ry clause terminates, the finally clause is processed.

The finally clause is itself a query which binds variables, which leads to questions: what happens to

Utility Commands 2021-07-12 95

TXR(1) TXR Programming Language TXR(1)

such variables? What if the finally block fails as a query? As well as: what if a finally clause itself
initiates a control transfer? Answers follow.

Firstly, a finally clause will contribute variable bindings only if the main clause terminates normally
(either as a successful or failed match). If the main clause of the t ry block successfully matches, then the
finally block continues matching at the next position in the data, and contributes bindings. If the main
clause fails, then the finally block tries to match at the same position where the main clause failed.

The overall try directive succeeds as a match if either the main clause or the £inally clause succeed. If
both fail, then the t ry directive is a failed match.

Example:

code: Q(try)
Qa
@(finally)
@b
@ (end)
Qc

data: 1
2
3

result: a="1"
b="2"
c="3"

In this example, the main clause of the try captures line "1" of the data as variable a, then the finally
clause captures "2" as b, and then the query continues with the @c line after try block, so that ¢ captures
n 3 n .

Example:

code: Q(try)
hello Qa
@(finally)
Q@b
@ (end)
Qc

data: 1
2

result: b="1"
c="2"

In this example, the main clause of the t ry fails to match, because the input is not prefixed with "hello
". However, the finally clause matches, binding b to "1". This means that the try block is a success-
ful match, and so processing continues with @c which captures "2".

When finally clauses are processed during a nonlocal return, they have no externally visible effect if
they do not bind variables. However, their execution makes itself known if they perform side effects, such
as output.

A finally clause guards only the main clause and the catch clauses. It does not guard itself. Once the
finally clause is executing, the t ry block is no longer guarded. This means if a nonlocal transfer, such as a
block accept or exception, is initiated within the finally clause, it will not re-execute the finally clause.
The finally clause is simply abandoned.

Utility Commands 2021-07-12 96

TXR(1) TXR Programming Language TXR(1)

The disestablishment of blocks and try clauses is properly interleaved with the execution of finally
clauses. This means that all surrounding exit points are visible in a finally clause, even if the finally
clause is being invoked as part of a transfer to a distant exit point. The finally clause can make a control
transfer to an exit point which is more near than the original one, thereby "hijacking" the control transfer.
Also, the anonymous block established by the t ry directive is visible in the finally clause.

Example:

@(try)

@ (try)
@ (next "nonexistent-file")
@ (finally)

@ (accept)

@ (end)

@ (catch file-error)

@ (output)

file error caught

@ (end)

@ (end)

In this example, the @ (next) directive throws an exception of type file—error, because the given file
does not exist. The exit point for this exception is the @ (catch file-error) clause in the outermost
try block. The inner block is not eligible because it contains no catch clauses at all. However, the inner try
block has a finally clause, and so during the processing of this exception which is headed for @ (catch
file-error), the finally clause performs an anonymous accept. The exit point for that accept
is the anonymous block surrounding the inner try. So the original transfer to the catch clause is thereby
abandoned. The inner try terminates successfully due to the accept, and since it constitutes the main
clause of the outer try, that also terminates successfully. The "file error caught" message is never
printed.

7.8.4 catch clauses

catch clauses establish their associated t ry blocks as potential exit points for exception-induced control
transfers (called "throws").

A catch clause specifies an optional list of symbols which represent the exception types which it catches.
The catch clause will catch exceptions which are a subtype of any one of those exception types.

If a try block has more than one catch clause which can match a given exception, the first one will be
invoked.

When a catch is invoked, it is understood that the main clause did not terminate normally, and so the
main clause could not have produced any bindings.

catch clauses are processed prior to finally.

If a catch clause itself throws an exception, that exception cannot be caught by that same clause or its sib-
lings in the same try block. The catch clauses of that block are no longer visible at that point. Neverthe-
less, the catch clauses are still protected by the finally block. If a catch clause throws, or otherwise termi-

nates, the finally block is still processed.

If a finally block throws an exception, then it is simply aborted; the remaining directives in that block
are not processed.

So the success or failure of the t ry block depends on the behavior of the catch clause or the finally

Utility Commands 2021-07-12 97

TXR(1)

TXR Programming Language TXR(1)

clause, if there is one. If either of them succeed, then the try block is considered a successful match.

Example:

code: Q(try)
@ (next "nonexistent-file")
@ x
@ (catch file-—-error)
Qa
@ (finally)
@b
@ (end)
Qc

data: 1
2
3

result: a="1"
b="2"
c="3"

Here, the try block’s main clause is terminated abruptly by a file-error exception from the
@ (next) directive. This is handled by the catch clause, which binds variable a to the input line "1".
Then the finally clause executes, binding b to "2". The try block then terminates successfully, and
so @c takes "3".

7.8.5 catch Clauses with Parameters
A catch clause may have parameters following the type name, like this:
@(catch pair (a b))
To write a catch-all with parameters, explicitly write the master supertype t:
@(catch t (arg ...))
Parameters are useful in conjunction with throw. The built-in error exceptions carry one argument,

which is a string containing the error message. Using throw, arbitrary parameters can be passed from the
throw site to the catch site.

7.8.6 The throw directive

The throw directive generates an exception. A type must be specified, followed by optional arguments,
which are bind expressions. For example,

@ (throw pair "a" ‘@file.txt?)

throws an exception of type pair, with two arguments, being "a" and the expansion of the quasiliteral
‘efile.txt .

The selection of the target cat ch is performed purely using the type name; the parameters are not involved
in the selection.

Binding takes place between the arguments given in throw and the target catch.

If any catch parameter, for which a throw argument is given, is a bound variable, it has to be identical to

Utility Commands 2021-07-12 98

TXR Programming Language TXR(1)

the argument, otherwise the catch fails. (Control still passes to the cat ch, but the catch is a failed match).

code: @ (bind a "apple")
@(try)
@ (throw e "banana")
@ (catch e (a))
@ (end)

result: [query fails]

If any argument is an unbound variable, the corresponding parameter in the catch is left alone: if it is an
unbound variable, it remains unbound, and if it is bound, it stays as is.

code: Q(try)
@(trow e "honda" unbound)
@ (catch e (carl car2))
@carl @car2

@ (end)
data: honda toyota
result: carl="honda"

car2="toyota"

If a catch has fewer parameters than there are throw arguments, the excess arguments are ignored:

code: Q(try)
@ (throw e "banana" "apple" "pear")
@ (catch e (fruit))
@ (end)

result: fruit="banana"

If a catch has more parameters than there are throw arguments, the excess parameters are left alone. They
may be bound or unbound variables.

code: Q(try)
@(trow e "honda")
@ (catch e (carl car2))
@carl @Qcarz

@ (end)
data: honda toyota
result: carl="honda"

car2="toyota"

A throw argument passing a value to a catch parameter which is unbound causes that parameter to be
bound to that value.

throw arguments are evaluated in the context of the throw, and the bindings which are available there.
Consideration of what parameters are bound is done in the context of the catch.

code: @(bind ¢ "c")

(try)

(forget c)

(bind (a c) ("a" "1lc"))
(throw e a c¢)

(catch e (b a))

(

@
@
@
@
@
@ (end)

"cl
"al

result: c
b

v
v

Utility Commands 2021-07-12 99

TXR(1) TXR Programming Language TXR(1)

a="lc"

In the above example, c has a top-level binding to the string "c", but then becomes unbound via forget
within the try construct, and rebound to the value "1c". Since the try construct is terminated by a
throw, these modifications of the binding environment are discarded. Hence, at the end of the query, vari-
able c ends up bound to the original value "c". The throw still takes place within the scope of the bind-
ings set up by the t ry clause, so the values of a and c that are thrown are "a" and "1c". However, at the
catch site, variable a does not have a binding. At that point, the binding to "a" established in the try
has disappeared already. Being unbound, the cat ch parameter a can take whatever value the correspond-
ing throw argument provides, so it ends up with "1c".

There is a horizontal form of throw. For instance:
abc@ (throw e 1)
throws exception e if abc matches.

If throw is used to generate an exception derived from type error and that exception is not handled,
TXR will issue diagnostics on the *stderr* stream and terminate. If an exception derived from warn-
ing is not handled, TXR will generate diagnostics on the *stderr* stream, after which control returns
to the throw directive, and proceeds with the next directive. If an exception not derived from error is
thrown, control returns to the throw directive and proceeds with the next directive.

7.8.7 The de fex directive

The de fex directive allows the query writer to invent custom exception types, which are arranged in a type
hierarchy (meaning that some exception types are considered subtypes of other types).

Subtyping means that if an exception type B is a subtype of A, then every exception of type B is also con-
sidered to be of type A. So a catch for type A will also catch exceptions of type B. Every type is a super-
type of itself: an A is a kind of A. This implies that every type is a subtype of itself also. Furthermore,
every type is a subtype of the type t, which has no supertype other than itself. Type nil is is a subtype of
every type, including itself. The subtyping relationship is transitive also. If A is a subtype of B, and B is a
subtype of C, then A is a subtype of C.

defex may be invoked with no arguments, in which case it does nothing:

@ (defex)
It may be invoked with one argument, which must be a symbol. This introduces a new exception type.
Strictly speaking, such an introduction is not necessary; any symbol may be used as an exception type with-
out being introduced by @ (defex):

@ (defex a)
Therefore, this also does nothing, other than document the intent to use a as an exception.
If two or more argument symbols are given, the symbols are all introduced as types, engaged in a subtype-
supertype relationship from left to right. That is to say, the first (leftmost) symbol is a subtype of the next
one, which is a subtype of the next one and so on. The last symbol, if it had not been already defined as a

subtype of some type, becomes a direct subtype of the master supertype t. Example:

Q@ (defex d e)
Q@ (defex a b c d)

Utility Commands 2021-07-12 100

TXR(1)

TXR Programming Language

TXR(1)

The first directive defines d as a subtype of e, and e as a subtype of t. The second defines a as a subtype
of b, b as a subtype of ¢, and c as a subtype of d, which is already defined as a subtype of e. Thus a is
now a subtype of e. The the above can be condensed to:

Q(defex a b c d e)

Example:

code:

collect)
try)

skip)

@ (cases)
gorilla @name

@
@
@
@
@
@

defex gorilla ape primate)
defex monkey primate)
defex human primate)

@ (throw gorilla name)

@ (or)

monkey @name

@ (throw monkey name)

@ (or)

human @name

@ (throw human name)

@ (end) @#cases

@ (catch primate
@kind @name

@ (output)

we have a primate
@ (end) @#output

@ (end) R#try

@ (end) @#collect

data: gorilla joe
human bob

monkey alice

output: we have a primate
we have a primate

we have a primate

(name))

@name of kind QRkind

joe of kind gorilla
bob of kind human
alice of kind monkey

Exception types have a pervasive scope. Once a type relationship is introduced, it is visible everywhere.
Moreover, the de fex directive is destructive, meaning that the supertype of a type can be redefined. This is
necessary so that something like the following works right:

@ (defex gorilla ape)
@ (defex ape primate)

These directives are evaluated in sequence. So after the first one, the ape type has the type t as its immedi-
ate supertype. But in the second directive, ape appears again, and is assigned the primate supertype,
while retaining gorilla as a subtype. This situation could be diagnosed as an error, forcing the program-
mer to reorder the statements, but instead TXR obliges. However, there are limitations. It is an error to
define a subtype-supertype relationship between two types if they are already connected by such a relation-
ship, directly or transitively. So the following definitions are in error:

@ (defex a b)
Q@ (defex b c)
Q@ (defex a c)@# error:

Utility Commands

a is already a subtype of c,

2021-07-12

through b

101

TXR(1) TXR Programming Language TXR(1)

@ (defex x y)
@ (defex y x)@# error: circularity; y 1s already a supertype of x.

7.8.8 The assert directive

The assert directive requires the remaining query or subquery which follows it to match. If the remain-
der fails to match, the assert directive throws an exception. If the directive is simply

@ (assert)

Then it throws an assertion of type assert, which is a subtype of error. The assert directive also takes
arguments similar to the throw directive: an exception symbol and additional arguments which are bind
expressions, and may be unbound variables. The following assert directive, if it triggers, will throw an
exception of type foo, with arguments 1 and "2":

@ (assert foo 1 "2")
Example:

@(collect)
Important Header

@ (assert)
Foo: @a, @b
@ (end)

Without the assertion in places, if the Foo: @a, @b part does not match, then the entire interior of the
@ (collect) clause fails, and the collect continues searching for another match.

With the assertion in place, if the text "Important Header" and its underline match, then the remain-
der of the collect body must match, otherwise an exception is thrown. Now the program will not silently
skip over any Important Header sections due to a problem in its matching logic. This is particularly useful
when the matching is varied with numerous cases, and they must all be handled.

There is a horizontal assert directive also. For instance:

abcQ (assert) d@x

asserts that if the prefix "abc" is matched, then it must be followed by a successful match for "d@x", or
else an exception is thrown.

If the exception is not handled, and is derived from error then TXR issues diagnostics on the *stderr*
stream and terminates. If the exception is derived from warning and not handled, TXR issues a diagnos-
tic on *stderr* after which control returns to the assert directive. Control silently returns to the

assert directive if an exception of any other kind is not handled.

When control returns to assert due to an unhandled exception, it behaves like a failed match, similarly to
the require directive.

8 TXR LISP
The TXR language contains an embedded Lisp dialect called TXR Lisp.

This language is exposed in TXR in a number of ways.

Utility Commands 2021-07-12 102

TXR(1) TXR Programming Language TXR(1)

In any situation that calls for an expression, a Lisp expression can be used, if it is preceded by the @ charac-
ter. The Lisp expression is evaluated and its value becomes the value of that expression. Thus, TXR direc-
tives are embedded in literal text using @, and Lisp expressions are embedded in directives using @ also.

Furthermore, certain directives evaluate Lisp expressions without requiring Q@. These are @ (do),
@ (require), @(assert),@(if) and @ (next).

TXR Lisp code can be placed into files. On the command line, TXR treats files with a ".t1" suffix as
TXR Lisp code, and the @ (Load) directive does also.

TXR also provides an interactive listener for Lisp evaluation.
Lastly, TXR Lisp expressions can be evaluated via the command line, using the —e and —p options.
Examples:
Bind variable a to the integer 4:
@(bind a @(+ 2 2))
Bind variable b to the standard input stream. Note that @ is not required on a Lisp variable:
@ (bind a *stdin*)
Define several Lisp functions inside @ (do) :

@ (do
(defun add (x y) (+ x y))

(defun occurs (item list)
(cond ((null list) nil)
((atom list) (egl item 1list))
(t (or (eq (first list) item)
(occurs item (rest list)))))))

Trigger a failure unless previously bound variable answer is greater than 42:

@ (require (> (int-str answer) 42)

8.1 Overview

TXR Lisp is a small and simple dialect, like Scheme, but much more similar to Common Lisp than
Scheme. It has separate value and function binding namespaces, like Common Lisp (and thus is a Lisp-2
type dialect), and represents Boolean true and false with the symbols t and nil (note the case sensitivity
of identifiers denoting symbols!). Furthermore, the symbol nil is also the empty list, which terminates
nonempty lists.

TXR Lisp has lexically scoped local variables and dynamic global variables, similarly to Common Lisp,
including the convention that defvar marks symbols for dynamic binding in local scopes. Lexical clo-

sures are supported. TXR Lisp also supports global lexical variables via defvarl.

Functions are lexically scoped in TXR Lisp; they can be defined in the pervasive global environment using
defun or in local scopes using flet and labels.

Utility Commands 2021-07-12 103

TXR(1) TXR Programming Language TXR(1)

8.2 Additional Syntax

Much of the TXR Lisp syntax has been introduced in the previous sections of the manual, since directive
forms are based on it. There is some additional syntax that is useful in TXR Lisp programming.

8.2.1 Symbol Tokens
The symbol tokens in TXR Lisp, called a Iident (Lisp identifier) has a similar syntax to the bident
(braced identifier) in the TXR pattern language. It may consist of all the same characters, as well as the /
(slash) character which may not be used in a bident. Thus a 1ident may consist of these characters, in
addition to letters, numbers and underscores:

'S s & *+-<=>72\"/
and may not look like a number.
A 1ident may also include all of the Unicode characters which are permitted in a bident.
The one character which is allowed in a 1ident but not in a bident is / (forward slash).
A lone / is a valid Iident and consequently a symbol token in TXR Lisp. The token /abc/ is also a

symbol, and, unlike in a braced expression, is not a regular expression. In TXR Lisp expressions, regular
expressions are written with a leading #.

8.2.2 Package Prefixes

If a symbol name contains a colon, the lident characters, if any, before that colon constitute the package
prefix.

For example, the syntax foo :bar denotes bar symbol in the foo package.
It is a syntax error to read a symbol whose package doesn’t exist.

If the package exists, but the symbol name doesn’t exist in that package, then the symbol is interned in that
package.

If the package name is an empty string (the colon is preceded by nothing), the package is understood to be
the keyword package. The symbol is interned in that package.

The syntax :test denotes the symbol test in the keyword package, the same as keyword:test.

Symbols in the keyword package are self-evaluating. This means that when a keyword symbol is evaluated
as a form, the value of that form is the keyword symbol itself. Exactly two non-keyword symbols also have
this special self-evaluating behavior: the symbols t and nil in the user package, whose fully qualified

names are usr:t and usr:nil.

The syntax @foo:bar denotes the meta prefix @ being applied to the foo :bar symbol, not to a symbol
in the @ foo package.

The syntax # :bar denotes an uninterned symbol named bar, described in the next section.

Dialect Note:

In ANSI Common Lisp, the foo:bar syntax does not intern the symbol bar in the foo pack-
age; the symbol must exist and be an exported symbol, or else the syntax is erroneous. In ANSI

Utility Commands 2021-07-12 104

TXR(1) TXR Programming Language TXR(1)

Common Lisp, the syntax foo: :bar does intern foo in the bar package. TXR’s package sys-
tem has no double-colon syntax, and lacks the concept of exported symbols.

8.2.3 Uninterned Symbols

Uninterned symbols are written with the #: prefix, followed by zero or more lident characters. When an
uninterned symbol is read, a new, unique symbol is constructed, with the specified name. Even if two unin-
terned symbols have the same name, they are different objects. The make—sym and gensym functions
produce uninterned symbols.

"Uninterned" means "not entered into a package". Interning refers to a process which combines package
lookup with symbol creation, which ensures that multiple occurrences of a symbol name in written syntax
are all converted to the same object: the first occurrence creates the symbol and associates it with its name
in a package. Subsequent occurrences do not create a new symbol, but retrieve the existing one.

8.2.4 Meta-Symbols, Meta-Numbers and Meta-Expressions
The syntax of a symbol, integer or compound expression may be preceded by the character @.
This is "meta syntax", whose meaning is unassigned as far as TXR Lisp evaluation is concerned. It plays a

syntactic role in the op operator, and in structural pattern matching. It also appears in the quasiliteral nota-
tion. In other situations, application code may assign meaning to meta syntax as the programmer sees fit.

Meta syntax is defined as a shorthand notation, as follows:

If X is a symbol or integer, the syntax @X is a shorthand for the compound expression (sys:var X).
This is referred to as a meta-symbol if X is a symbol, or a meta-number if X is an integer.

If X is a compound expression, either (...) or [...], then @X is a shorthand for (sys:expr X).
This is called a meta-expression.

The behavior of @ followed by the syntax of a floating-point constant introduced by a leading decimal
point, not preceded by digits, is unspecified. Examples of thisare @. 123 and @. 123E+5.

The behavior of @ followed by the syntax of a floating-point expression in E notation, which lacks a deci-
mal point, is also unspecified. An example of this is @12E5.

It is a syntax error for @ to be followed by what appears to be a floating-point constant consisting of a deci-
mal point flanked by digits on both sides. For instance @1 . 2 is rejected.

A meta-expression followed by a period, and the syntax of another object is otherwise interpreted as a ref-
erencing dot expression. For instance @1 .E3 denotes (gref @1 E3) which, in turn, denotes (gref
(sys:var 1) E3), even though the unprefixed character sequence 1.E3 is otherwise a floating-point
constant.

8.2.5 Consing Dot

Unlike other major Lisp dialects, TXR Lisp allows a consing dot with no forms preceding it. This construct
simply denotes the form which follows the dot. That is to say, the parser implements the following trans-
formation:

(. expr) —-> expr

This is convenient in writing function argument lists that only take variable arguments. Instead of the syn-
tax:

Utility Commands 2021-07-12 105

TXR(1) TXR Programming Language TXR(1)

(defun fun args ...)
the following syntax can be used:
(defun fun (. args) ...)

When a 1ambda form is printed, it is printed in the following style.

(lambda nil ...) -> (lambda () ...)
(lambda sym ...) —-> (lambda (. sym) ...)
(lambda (sym) ...) —> (lambda (sym) ...)

In no other circumstances is nil printed as (), or an atom symas (. sym).

8.2.6 Referencing Dot

A dot token which is flanked by expressions on both sides, without any intervening whitespace, is the refer-
encing dot, and not the consing dot. The referencing dot is a syntactic sugar which translated to the gref
syntax ("quoted ref"). When evaluated as a form, this syntax denotes structure access; see Structures. How-
ever, it is possible to put this syntax to use for other purposes, in other contexts.

; a.b may be almost any expressions

a.b <--> (qgref a b)

a.b.c <-—=> (qgref a b ¢)
a.(gref b c) <-—> (gref a b)

(gref a b).c <--> (gref (gref a b) c)

That is to say, this dot operator constructs a gre f expression out of its left and right arguments. If the right
argument of the dot is already a qref expression (whether produced by another instance of the dot operator,
or expressed directly) it is merged. This requires the qref dot operator to be right-to-left associative, so that
a.b.c works by first translating b.c to (gqref b c¢), and then adjoining a to produce (qref a b
c).

If the referencing dot is immediately followed by a question mark, it forms a single token, which produces
the following syntactic variation, in which the following item is annotated as a list headed by the symbol t:

a.?b <--> (t a).b <-—-> (gref (t a) b)
a.?b.?c <--=> (t a).(t b).c <--> (gref (t a) (t b) c)
a.?(b) <-=> (t a).(b) <-=> (gref (t a) (b))

(a) .?b <--> (t (a)).b <-—> (gref (t (a)) b)

This syntax denotes null-safe access to structure slots and methods. a.?b means that a may evaluate to
nil, in which case the expression yields nil; otherwise, a must evaluate to a st ruct which has a slot b,
and the expression denotes access to that slot. Similarly, a.? (b 1) means that if a evaluates to nil, the
expression yields nil; otherwise, a is treated as a struct object whose method b is invoked with argument
1, and the value returned by that method becomes the value of the expression.

Integer tokens cannot be involved in this syntax, because they form floating-point constants when juxta-
posed with a dot. Such ambiguous uses of floating-point tokens are diagnosed as syntax errors:

(a.4) ;; error: cramped floating-point literal
(a .4) ;; good: a followed by 0.4

Utility Commands 2021-07-12 106

TXR(1) TXR Programming Language TXR(1)

8.2.7 Unbound Referencing Dot

Closely related to the referencing dot syntax is the unbound referencing dot. This is a dot which is flanked
by an expression on the right, without any intervening whitespace, but is not preceded by an expression
Rather, it is preceded by whitespace, or some punctuation such as [, (or /. This is a syntactic sugar which
translates to ure f syntax:

.a <-—> (uref a)
.a.b <—=> (uref a b)
.a.?b <-—=> (uref (t a) b)

If the unbound referencing dot is itself combined with a question mark to form the .? token, then the
translation to uref is as follows:

.?a <—-=> (uref t a)
.?a.b <-=> (uref t a b)
.?a.?b <-—=> (uref t a (t b))

When the unbound referencing dot is applied to a dotted expression, this can be understood as a conversion
of gref touref.

Indeed, this is exactly what happens if the unbound dot is applied to an explicit gre f expression:
. (gref a b) <--> (uref a b)

The unbound referencing dot takes its name from the semantics of the uref macro, which produces a
function that implements late binding of an object to a method slot. Whereas the expression obj.a.b
denotes accessing object obj to retrieve slot a and then accessing slot b of the object from that slot, the
expression .a.b. represents a "disembodied" reference: it produces a function which takes an object as
an argument and then performs the implied slot referencing on that argument. When the function is called,
it is said to bind the referencing to the object. Hence that referencing is "unbound".

Whereas the expression . a produces a function whose argument must be an object, . ?a produces a func-
tion whose argument may be nil. The function detects this case and returns nil.

8.2.8 Quote and Quasiquote

" expr The quote character in front of an expression is used for suppressing evaluation, which is
useful for forms that evaluate to something other than themselves. For instance if * (+ 2
2) is evaluated, the value is the three-element list (+ 2 2), whereas if (+ 2 2) is
evaluated, the value is 4. Similarly, the value of ’ a is the symbol a itself, whereas the
value of a is the contents of the variable a.

“qgg-template
The caret in front of an expression is a quasiquote. A quasiquote is like a quote, but with
the possibility of substitution of material.

Under a quasiquote, form is considered to be a quasiquote template. The template is con-
sidered to be a literal structure, except that it may contain the notations , expr and

, *expr which denote non-constant parts.

A quasiquote gets translated into code which, when evaluated, constructs the structure
implied by gg-template, taking into account the unquotes and splices.

A quasiquote also processes nested quasiquotes specially.

Utility Commands 2021-07-12 107

TXR(1)

TXR Programming Language TXR(1)

If gg-template does not contain any unquotes or splices (which match its level of
nesting), or is simply an atom, then ~gg-template is equivalentto ' gg-template

in other words, it is like an ordinary quote. For instance ~(a b ~(c ,d)) is
equivalent to ’ (a b " (c ,d)). Although there is an unquote ,d it belongs to the
inner quasiquote ~ (¢ , d), and the outer quasiquote does not have any unquotes of its
own, making it equivalent to a quote.

Dialect Note: in Common Lisp and Scheme, ~form is written ‘form, and quasiquotes
are also informally known as backquotes. In TXR, the backquote character * used for
quasistring literals.

, expr The comma character is used within a gg—template to denote an unquote. Whereas
the quasiquote suppresses evaluation, similarly to the quote, the comma introduces an
exception: an element of a form which is evaluated. For example, list " (a b c , (+ 2
2) (+ 2 2))isthelist (a b ¢ 4 (+ 2 2)). Everything in the quasiquote stands
for itself, except for the , (+ 2 2) which is evaluated.

Note: if a variable is called *x*, then the syntax , *x* means , * x*: splice the value of
x*. In this situation, whitespace between the comma and the variable name must be
used: , *x*.

, *expr
The comma-star operator is used within quasiquote list to denote a splicing unquote. The
form which follows , * must evaluate to a list. That list is spliced into the structure which
the quasiquote denotes. For example: (a b ¢ ,*(list (+ 3 3) (+ 4 4)
d)) evaluatesto (a b ¢ 6 8 d). Theexpression (list (+ 3 3) (+ 4 4)) is
evaluated to produce the list (6 8), and this list is spliced into the quoted template.

Dialect Notes:

In other Lisp dialects, like Scheme and ANSI Common Lisp, the equivalent syntax is usually , @
(comma at). The @ character already has an assigned meaning in TXR, so * is used.

However, * is also a character that may appear in a symbol name, which creates a potential for
ambiguity. The syntax , *abc denotes the application of the , * splicing operator to the symbolic
expression abc; to apply the ordinary non-splicing unquote to the symbol *abc, whitespace must

be used: , *abc.

In TXR, the unquoting and splicing forms may freely appear outside of a quasiquote template. If
they are evaluated as forms, however, they throw an exception:

,(+ 2 2) ;; error!
L+ 2 2) ——> ,(+ 2 2)

In other Lisp dialects, a comma not enclosed by backquote syntax is treated as a syntax error by
the reader.

8.2.9 Quasiquoting non-List Objects

Quasiquoting is supported over hash table and vector literals (see Vectors and Hashes below). A hash table
or vector literal can be quoted, like any object, for instance:

"T#(1 2 3)

Utility Commands 2021-07-12 108

TXR(1) TXR Programming Language TXR(1)
The # (1 2 3) literal is turned into a vector atom right in the TXR parser, and this atom is being quoted:
thisis (quote atom) syntactically, which evaluates to atom.

When a vector is quasi-quoted, this is a case of “atom which evaluates to atom.
A vector can be quasiquoted, for example:

“#(1 2 3)
Unquotes can occur within a quasiquoted vector:

(let ((a 42))
“#(1 ,a 3)) ; value is #(1 42 3)

In this situation, the “# (. . .) notation produces code which constructs a vector.

The vector in the following example is also a quasivector. It contains unquotes, and though the quasiquote
is not directly applied to it, it is embedded in a quasiquote:

(let ((a 42))
“(a b c #(d ,a))) ; value is (a b c #(d 42))

Hash-table literals have two parts: the list of hash construction arguments and the key-value pairs. For
instance:

#H((:egql-based) (a 1) (b 2))

where (:eqgl-based) indicates that this hash table’s keys are treated using eql equality, and (a 1)
and (b 2) are the key/value entries. Hash literals may be quasiquoted. In quasiquoting, the arguments
and pairs are treated as separate syntax; it is not one big list. So the following is not a possible way to
express the above hash:

;; not supported: splicing across the entire syntax

(let ((hash-syntax ' ((:egl-based) (a 1) (b 2))))

“#H (, *hash-syntax))

This is correct:

;7 fine: splicing hash arguments and contents separately

(let ((hash-args ’ (:egl-based))

(hash-contents ' ((a 1) (b 2))))
“#H (, hash-args , *hash-contents))

8.2.10 Quasiquoting combined with Quasiliterals

When a quasiliteral is embedded in a quasiquote, it is possible to use splicing to insert material into the
quasiliteral.

Example:
(eval (let ((a 3)) "“‘abc Q,a @{,a} @{(list 1 2 ,a)}))

-> "abc 3 31 2 3"

Utility Commands 2021-07-12 109

TXR(1) TXR Programming Language TXR(1)

8.2.11 Vector Literals
#(...)

A hash token followed by a list denotes a vector. For example # (1 2 a) is a three-element vec-
tor containing the numbers 1 and 2, and the symbol a.

8.2.12 Struct Literals

#S (name {slot value}*)
The notation #S followed by a nested list syntax denotes a struct literal. The first item in the syn-
tax is a symbol denoting the struct type name. This must be the name of a struct type, otherwise
the literal is erroneous. Followed by the struct type are slot names interleaved with their values.
The values are literal expressions, not subject to evaluation. Each slot name which is present in
the literal must name a slot in the struct type, though not all slots in the struct type must be present
in the literal.

When a struct literal is read, the denoted struct type is constructed as if by a call to make-
struct with an empty plist argument, followed by a sequence of assignments which store
into each slot the corresponding value expression.

8.2.13 Hash Literals

#H ((hash—-argument*) (key value) *)

The notation #H followed by list syntax denotes a hash-table literal. The first item in the syntax is
a list of keywords. These are the same keywords as are used when calling the function hash to con-
struct a hash table. Allowed keywords are: :equal-based, :egl-based, :eg-based,
:weak-keys, :weak-values, and :userdata. If the :userdata keyword is present, it
must be followed by an object; that object specifies the hash table’s user data, which can be
retrieved using the hash-userdata function. The :equal-based, :egl-based and
:eg-based keywords are mutually exclusive.

An empty list can be specified as nil or (), which defaults to a hash table based on the eql
function, with no weak semantics or user data.

The entire syntax following #H may be an empty list; however, that empty list may not be speci-
fied as nil; the empty parentheses notation is required.

The hash table’s key-value contents are specified as zero or more two-element lists, whose first
element specifies the key and whose second specifies the value. Both expressions are literal
objects, not subject to evaluation.

8.2.14 Range Literals

#R (from to)
The notation #R followed by a two-element list syntax denotes a range literal. It combines from
and to expressions, themselves literals not subject to evaluation, producing the range object
whose corresponding t o and from fields are the objects denoted by these expressions.

8.2.15 Buffer Literals

#b’ hex—data’
The notation #b’ introduces a buffer object: a data representation for a block of bytes. This #b”’
prefix must be followed by a data section and a closing quote. The data section consists of hexa-
decimal digits, among which may be interspersed whitespace: tabs, spaces and newlines. There
must be an even number of digits, or else the notation is ill-formed. The whitespace is ignored, and

Utility Commands 2021-07-12 110

TXR(1) TXR Programming Language TXR(1)

pairs of successive hex digits specify bytes. If there are no hex digits, then a zero length buffer is
specified.

Buffers may be constructed by the make-buf function, and other means such as the ffi-get
function.

Note that the #b prefix is also used for binary numbers. In that syntax, it is followed by an
optional sign, and then a mixture of one or more of the digits 0 or 1.

8.2.16 Tree Node Literals

#N([key [left [rightl]l])
The notation #N followed by list syntax denotes a tree node literal. The list syntax must be a
proper list that has up to three elements. If the list is empty, it may not be written as ni 1.

A tree node is an object of type tnode. Every tnode has three elements: a key, a left link
and a right link. They may be objects of any type. If the tree node literal syntax omits any of
these, they default tonil.

8.2.17 Tree Literals

#T ([([keyfun [lessfun [equalfun]]]) item*])
The notation #T followed by list syntax denotes a tree literal, which specifies an object of type
tree. Objects of type t ree are search trees.

The list syntax which follows #T may be empty. If so, it cannot be written as nil.

The first element of the #T syntax, if present, must be a list of zero to three elements. These ele-
ments are symbols giving the names of the tree object’s key abstraction functions. keyfun
specifies the key function which is applied to each element to retrieve its key. If it is omitted, the
object shall use the ident ity function as its key. The 1essfun specifies the name of the com-
parison function by which keys are compared for inequality. It defaults to 1ess. The equalfun
specifies the function by which keys are compared for equality. It defaults to equal. A symbol
which is specified as the name of any of these three special functions must be an element of the list
stored in the special variable *tree-fun-whitelist*, otherwise the string literal is diag-
nosed as erroneous. Note: this is due to security considerations, since these three functions are
executed during the processing of tree syntax.

A tree object is constructed from a tree literal by first creating an empty tree endowed with the
three key abstraction functions that are indicated in the syntax, either explicitly or as defaults.
Then, every element object is constructed from its respective literal syntax and inserted into the
tree.

8.2.18 JSON Literals

#Jjson-syntax
Introduces a JSON literal.
#J" json-syntax

Introduces a JSON quasiliteral, allowing unquoting and splicing of Lisp expressions.

The implementation of JSON syntax is based on, and intended to conform with the IETF RFC
8259 document. Only TXR’s extensions to JSON syntax are described in this manual, as well as
the correspondence between JSON syntax and Lisp.

Utility Commands 2021-07-12 111

TXR(1)

TXR Programming Language TXR(1)

The json-syntaxis translated into a TXR Lisp object as follows.

A JSON string corresponds to a Lisp string. A JSON number corresponds to a Lisp floating-point
number. A JSON array corresponds to a Lisp vector. A JSON object corresponds to an equal-
based hash table.

The JSON Boolean symbols true and false translate to the Lisp symbols t and nil, respec-
tively, those being the standard ones in the usr package.

The JSON symbol null maps to the null symbol in the usr package.

The #J json-syntax expression produces the object:
(json quote lisp-object)

where 11isp-object is the Lisp value which corresponds to the json-syntax.

Similarly, but with a key difference, the #J" json-syntax expression produces the object:
(json sys:gquote lisp-object)

in which quote has been replaced with sys: gquote.

The json symbol is bound as a macro, which is expanded when a #J expression is evaluated.

The following remarks indicate special treatment and extensions in the processing of JSON. Simi-
lar remarks regarding the production of JSON are given under the put - json function.

When an invalid UTF-8 byte is encountered inside a JSON string, its value is mapped into the
code point range U+DCO01 to U+DCFF. That byte is consumed, and decoding continues with the
next byte. This treatment is consistent with the treatment of invalid UTF-8 bytes in TXR Lisp lit-
erals and I/O streams. If the valid UTF-8 byte U+0000 (ASCII NUL) occurs in a JSON string, it
is also mapped to U+DCO00, TXR’s pseudo-null character. This treatment is consistent with TXR
string literals and I/O streams.

The JSON escape sequence \u0000 denoting the U+0000 NUL character is also converted to
U+DCO00.

TXR Lisp does not impose the restriction that the keys in a JSON object must be strings:
#J{1:2,true:false} is accepted.

TXR Lisp allows the circle notation to occur within JSON syntax. See the section Notation for
Circular and Shared Structure.

TXR Lisp allows for JSON syntax to be quasiquoted, and provides two extensions for writing
unquotes and splicing unquotes. Within a JSON quasiquote, the ~ (tilde) character introduces a
Lisp expression whose value is to be substituted at that point. Thus, the tilde serves the role of the
unquoting comma used in Lisp quasiquotes. Splicing is indicated by the character sequence ~*,
which introduces a Lisp expression that is expected to produce a list, whose elements are interpo-
lated into the JSON value.

Note: quasiquoting allows Lisp values to be introduced into the resulting object which are outside
of the JSON type system, such as integers, characters, symbols or structures. These objects have
no representation in JSON syntax.

Utility Commands 2021-07-12 112

TXR(1)

TXR Programming Language TXR(1)

Examples:

;; Basic JSON:

#Jtrue -> t

#Jfalse —-> nil

(list #J true #Jtrue #Jfalse) -> (t t nil)
#J[1, 2, 3.14] —> #(1.0 2.0 3.14)
#J3{"foo":"bar"} —> #H(() ("foo" "bar"))

;7 Quoting JSON shows the json expression

"#Jfalse -> (Json quote ())

"#Jtrue -> (Json quote t)

"#J["a", true, 3.0] -> (json quote #("a" t 3.0))
"#3°[7(+ 2 2), 31 -> (Json sys:gqquote #(, (+ 2 2) 3.0))

:; Circle notation:
$I(#1="abc", #1#, #1#] -> #("abc" "abc" "abc")
;7 JSON Quasiquote:

#J°["* (1list

1 “(* 2.0 2), 5.0]
-——> #(1.0 2.0

.0 2.0 3.0),
3.0 4.0 5.0)

;7 Lisp quasiquote around JSON quote: requires evaluation round.

“#J["*(list 1.0 2.0 3.0), “(* 2.0 2), 5.0]
—--> (json quote #(1.0 2.0 3.0 4.0 5.0))

3.0), “(* 2.0 2), 5.01])

(eval “#J["*(list 1.
0 4)

0 2.0
-—> #(1.0 2.0 3. .0 5.0

8.2.19 The . . notation

In TXR Lisp, there is a special "dotdot" notation consisting of a pair of dots. This can be written between
successive atoms or compound expressions, and is a shorthand for rcons.

That is to say, A .. B translatesto (rcons A B),and so forinstance (a b .. (c d) e .. £
g) means (a (rcons b (c d)) (rcons e f) . g).

The rcons function constructs a range object, which denotes a pair of values. Range objects are most
commonly used for referencing subranges of sequences.

For instance, if L is a list, then [. 1 .. 3] computes a sublist of L consisting of elements 1 through 2
(counting from zero).

Note that if this notation is used in the dot position of an improper list, the transformation still applies. That
is, the syntax (a . b .. c) is valid and produces the object (a . (rcons b c)) which is another
way of writing (a rcons b c), which is quite probably nonsense.

The notation’s .. operator associates right to left, so that a. .b..c denotes (rcons a (rcons b
c)).

Utility Commands 2021-07-12 113

TXR(1) TXR Programming Language TXR(1)

Note that range objects are not printed using the dotdot notation. A range literal has the syntax of a two-
element list, prefixed by #R. (See Range Literals above.)

In any context where the dotdot notation may be used, and where it is evaluated to its value, a range literal
may also be specified. If an evaluated dotdot notation specifies two constant expressions, then an equiva-
lent range literal can replace it. For instance the form [L 1 .. 3] can also be written [L #R(1 3)].
The two are syntactically different, and so if these expressions are being considered for their syntax rather
than value, they are not the same.

8.2.20 The DWIM Brackets
TXR Lisp has a square bracket notation. The syntax [...] is a shorthand way of writing (dwim ...).

The [] syntax is useful for situations where the expressive style of a Lisp-1 dialect is useful.

For instance if foo is a variable which holds a function object, then [foo 3] can be used to call it,
instead of (call foo 3). If foois a vector, then [foo 3] retrieves the fourth element, like (vecref
foo 3). Indexing over lists, strings and hash tables is possible, and the notation is assignable.

Furthermore, any arguments enclosed in [] which are symbols are treated according to a modified names-
pace lookup rule.

More details are given in the documentation for the dwim operator.

8.2.21 Compound Forms

In TXR Lisp, there are two types of compound forms: the Lisp-2 style compound forms, denoted by ordi-
nary lists that are expressed with parentheses. There are Lisp-1 style compound forms denoted by the
DWIM Brackets, described in the previous section.

The first position of an ordinary Lisp-2 style compound form, is expected to have a function or operator
name. Then arguments follow. There may also be an expression in the dotted position, if the form is a func-
tion call.

If the form is a function call then the arguments are evaluated. If any of the arguments are symbols, they are
treated according to Lisp-2 namespacing rules.

A function name may be a symbol, or else any of the syntactic forms given in the description of the func-
tion func—-get—-name.

8.2.22 Dot Position in Function Calls

If there is an expression in the dotted position of a function call expression, it is also evaluated, and the
resulting value is involved in the function call in a special way.

Firstly, note that a compound form cannot be used in the dot position, for obvious reasons, namely that (a
b ¢ . (foo z)) doesnot mean that there is a compound form in the dot position, but denotes an alter-

nate spelling for (a b ¢ foo z), where foo behaves as a variable.

If the dot position of a compound form is an atom, then the behavior may be understood according to the
following transformations:

(fabc x) -—> (apply (fun f) a b c ... x)
[fabc x1 —-—> Japply £f abc ... x]

In addition to atoms, meta-expressions and meta-symbols can appear in the dot position, even though their

Utility Commands 2021-07-12 114

TXR(1) TXR Programming Language TXR(1)
underlying syntax is comprised of a compound expression. This appears to work according to a transforma-
tion pattern which superficially appears to be the same as that for atoms:

(fabc @x) -—> (apply (fun f) a b c ... @x)

However, in this situation, the @x is actually the form (sys:var x) and the dotted form is actually a
proper list. The transformation is in fact taking place over a proper list, like this:

(f abc ... sys:var x) --> (apply (fun f) a b c ... (sys:var @x))
That is to say, the TXR Lisp form expander reacts to the presence of a sys:var or sys:expr atom in
embedded in the form. That symbol and the items which follow it are wrapped in an additional level of
nesting, converted into a single compound form element.

Effectively, in all these cases, the dot notation constitutes a shorthand for apply.
Examples:

contains 3

contains 4

contains #(5 6 7)
contains "xyz"

w Q O o

(foo a b . ¢) ;; calls (foo 3 4 5 6 7)

(foo a) ;; calls (foo 3)

(foo . s8) ;7 calls (foo #\x #\y #\z)

(list . a) ;7 yields 3

(list a . b) ;i yields (3 . 4)

(list a . c) ;7 yields (3 5 6 7)

(list* a c) ;i yields (3 #(5 6 7))

(cons a . b) ;; error: cons isn’t variadic.

(cons a b . c) ;; error: cons requires exactly two arguments.

[foo a b . c] ;; calls (foo 3 4 5 6 7)

[c 1] ;; 1lndexes into vector #(5 6 7) to yield 6

(call (op list 1 . @1) 2) ;; yields (1 . 2)
Note that the atom in the dot position of a function call may be a symbol macro. Since the semantics works
as if by transformation to an apply form in which the original dot position atom is an ordinary argument,
the symbol macro may produce a compound form.

Thus:

(symacrolet ((x 2))
(list 1 . x)) ;7 yilelds (1 . 2)

(symacrolet ((x (list 1 2)))
(list 1 . x)) ;7 ylelds (1 1 2)

That is to say, the expansion of x is not substituted into the form (list 1 . x) but rather the

Utility Commands 2021-07-12 115

TXR(1) TXR Programming Language TXR(1)

transformation to apply syntax takes place first, and so the substitution of x takes place in a form resem-
bling (apply (fun list) 1 x).

Dialect Note:

In some other Lisp dialects like ANSI Common Lisp, the improper list syntax may not be used as a func-
tion call; a function called apply (or similar) must be used for application even if the expression which
gives the trailing arguments is a symbol. Moreover, applying sequences other than lists is not supported.

8.2.23 Improper Lists as Macro Calls

TXR Lisp allows macros to be called using forms which are improper lists. These forms are simply
destructured by the usual macro parameter list destructuring. To be callable this way, the macro must have
an argument list which specifies a parameter match in the dot position. This dot position must either match
the terminating atom of the improper list form, or else match the trailing portion of the improper list form.

For instance if a macro mac is defined as
(defmacro mac (a b . ¢c) ...)

then it may not be invoked as (mac 1 . 2) because the required argument b is not satisfied, and so the
2 argument cannot match the dot position ¢ as required. The macro may be called as (mac 1 2 . 3) in
which case c receives the form 3. Ifitis called as (mac 1 2 3 . 4) then c receives the improper list
form3 . 4.

8.2.24 Regular-Expression Literals

In TXR Lisp, the / character can occur in symbol names, and the / token is a symbol. Therefore the
/regex/ syntax is not used for denoting regular expressions; rather, the #/regex/ syntax is used.

8.2.25 Notation for Circular and Shared Structure

TXR Lisp supports a printed notation called circle notation which accurately articulates the representation
of objects which contain shared substructures as well as circular references. The notation is supported as a
means of input, and is also optionally produced as output, controlled by the *print-circle* variable.

Ordinarily, shared substructure in printed objects is not evident, except in the case of multiple occurrences
of interned symbols, in whose semantics it is implicit that they refer to the same object. Other shared struc-
ture is printed as separate copies which look like distinct objects. For instance, the object produced by
(let ((shared ' (1 2))) (list shared shared)) isprintedas ((1 2) (1 2)), where
it is not clear that the two occurrences of (1 2) are actually the same object. Under the circle notation,
this object can be represented as (#5=(1 2) #5#). The #5= part introduces a reference label, associat-
ing the arbitrarily chosen nonnegative integer 5 with the object which follows. The subsequent notation
#54# simply refers to the object labeled by 5, reproducing that object by reference. The result is a two-ele-
ment list which has the same (1 2) in two places.

Circular structure presents a greater challenge to printing: namely, if it is printed by a naive recursive
descent, it results in infinite output, and possibly stack exhaustion due to recursion. The circle notation
detects and handles circular references. For instance, the object produced by (let ((c (list 1)))
(rplacd c c)) produces a circular list which looks like an infinite listof 1’s: (1 1 1 1 ...). This
cannot be printed. However, under the circle notation, it can be represented as #1=(1 . #1#). The
entire object itself is labeled by the integer 1. Then, enclosed within the syntax of that labeled object itself,
a reference occurs to the label. This circular label reference represents the corresponding circular reference
in the object.

Utility Commands 2021-07-12 116

TXR(1) TXR Programming Language TXR(1)

A detailed description of the notational elements follows:

#digits= object
The #= syntax introduces an object label which denotes the object whose printed representation
follows. The label is identified by the integer value arising from digits digit.s which are one or
more decimal digits. Note: the value zero is permitted; even though when the notation is produced
by the TXR Lisp printer, labeling begins at 1. Negative values are not possible because a leading
sign is not part of the syntax.

There may be no more than one definition for a given label within the syntactic scope being
parsed, otherwise a syntax error occurs. In TXR pattern language code, an entire source file is
parsed as one unit, and so scope for the circular notation’s references is the entire source file. Files
processed by @ (include) have their own scope. The scope for labels in TXR Lisp source code
is the top-level expression in which they appear. Consequently, references in one TXR Lisp top-
level expression cannot reach definitions in another.

#digits#
The ## syntax denotes a label reference: the repetition of an object that was previously labeled by
the integer given by digits. If no such label had been introduced in the syntactic scope, a syn-
tax error occurs. An object was previously labeled by digits if a #= definition occurs in the
same syntactic scope as the reference, and is applied to an object which either encloses the refer-
ence, or lexically precedes the reference. Forward references such as (#1# #1=(1 2)) are not
supported.

Note:
Circular notation can span hash-table literals. The syntax #1=#H((:eqgl-based) (#1# #1#))
denotes an egl-based hash table which contains one entry, in which that same table itself is both the key

and value. This kind of circularity is not supported for equal-based hash tables. The analogous syntax
#1=#H(() (#1# #1#)) produces a hash table in an inconsistent state.

Dialect Note:

Circle notation is taken from Common Lisp, intended to be unsurprising to users familiar with that lan-
guage. The implementation is based on descriptions in the ANSI Common Lisp document, judiciously tak-
ing into account the content of the X3J13 Cleanup Issues named PRINT-CIRCLE-STRUCTURE:USER-
FUNCTIONS-WORK and PRINT-CIRCLE-SHARED:RESPECT-PRINT-CIRCLE.

8.2.26 Notation for Erasing Objects

#; expr
The TXR Lisp notation #; in TXR Lisp indicates that the expression expr is to be read and then
discarded, as if it were replaced by whitespace.

This is useful for temporarily "commenting out" an expression.

Notes:

Whereas it is valid for a TXR Lisp source file to be empty, it is a syntax error if a TXR Lisp source file
contains nothing but one or more objects which are each suppressed by a preceding #; . In the interactive
listener, an input line consisting of nothing but commented-out objects is similarly a syntax error.

The notation does not cascade; consecutive occurrences of #; trigger a syntax error.

The notation interacts with the circle notation. Firstly, if an object which is erased by #; contains circular-

Utility Commands 2021-07-12 117

TXR(1) TXR Programming Language TXR(1)

referencing instances of the label notation, those instances refer to nil. Secondly, commented-out objects
may introduce labels which are subsequently referenced in expr. An example of the first situation occurs
in:

#; (#1=(#14#))
Here the #1# label is a circular reference because it refers to an object which is a parent of the object
which contains that reference. Such a reference is only satisfied by a "backpatching" process once the entire

surrounding syntax is processed to the top level. The erasure perpetrated by #; causes the #1# label refer-
ence to be replaced by nil, and therefore the labeled object is the object (nil).

An example of the second situation is
#; (#2=(a b c)) #2#

Here, even though the expression (#2=(a b c)) is suppressed, the label definition which it has intro-
duced persists into the following object, where the label reference #2# resolvesto (a b c).

A combination of the two situations occurs in
#; (#1=(#14#)) #14#

which yields (nil). This is because the #1= label is available; but the earlier #1# reference, being a cir-
cular reference inside an erased object, had lapsed to ni1.

8.3 Generalization of List Accessors

In ancient Lisp in the 1960’s, it was not possible to apply the operations car and cdr to the nil symbol
(empty list), because it is not a cons cell. In the InterLisp dialect, this restriction was lifted: these opera-
tions were extended to accept nil (and return nil). The convention was adopted in other Lisp dialects
such as MacLisp and eventually in Common Lisp. Thus there exists an object which is not a cons, yet
which takes car and cdr.

In TXR Lisp, this relaxation is extended further. For the sake of convenience, the operations car and cdr,
are made to work with strings and vectors:

(cdr "") —> nil
(car "") —> nil

(car "abc") -> #\a
(cdr "abc") _> "bc"

(cdr #(1 2 3)) —> #(2 3)
(car #(1 2 3)) —> 1

Moreover, structure types which define the methods car, cdr and nullify can also be treated in the
same way.

The 1diff function is also extended in a special way. When the right parameter a non-list sequence, then
it uses the equal equality test rather than eq for detecting the tail of the list.

(1diff "abcd" "cd") -> (#\a #\b)
The 1diff operation starts with "abcd" and repeatedly applies cdr to produce "bcd" and "cd", until

the suffix is equal to the second argument: (equal "cd" "cd") yields true.

Utility Commands 2021-07-12 118

TXR(1) TXR Programming Language TXR(1)

Operations based on car, cdr and 1diff, such as keep-if and remq extend to strings and vectors.

Most derived list processing operations such as remg or mapcar obey the following rule: the returned
object follows the type of the leftmost input list object. For instance, if one or more sequences are pro-
cessed by mapcar, and the leftmost one is a character string, the function is expected to return characters,
which are converted to a character string. However, in the event that the objects produced cannot be assem-
bled into that type of sequence, a list is returned instead.

For example [mapcar list "ab" "12"] returns ((#\a #\b) (#\1 #\2)), because a string
cannot hold lists of characters. However [mappend list "ab" "12"] returns "alb2".

The lazy versions of these functions such as mapcar* do not have this behavior; they produce lazy lists.

8.4 Generalization of Iteration

TXR Lisp implements a unified paradigm for iterating over sequence-like container structures and abstract
spaces such as bounded and unbounded ranges of integers. This concept is based around an iterator abstrac-
tion which is directly compatible with Lisp cons-cell traversal in the sense that when iteration takes place
over lists, the iterator instance is nothing but a cons cell.

An iterator is created using the constructor function iter-begin which takes a single argument. The
argument denotes a space to be traversed; the iterator provides the means for that traversal.

When the iter-begin function is applied to a list (a cons cell or the nil object), the return value is
that object itself. The remaining functions in the iterator API then behave like aliases for list processing
functions. The iter-more function behaves like identity, iter—item behaves like car and
iter-step behaves like cdr.

For example, the following loops not only produce identical behavior, but the iter variable steps through
the cons cells in the same manner in both:

;7 print all symbols in the list (a b c d):

(let ((iter "(a b c d)))
(while iter
(prinl (car iter))
(set iter (cdr iter))))

;7 likewise:

(let ((iter (iter-begin ’'(a b c d))))
(while (iter—-more iter)
(prinl (iter-item iter))
(set iter (iter-step iter))))

There are three important differences.

Firstly, both examples will still work if the list (a b ¢ d) is replaced by a different kind of sequence,
such as the string "abcd" or the vector # (a2 b ¢ d). However, the former example will not execute
efficiently on these objects. The reason is that the cdr function will construct successive suffixes of the
string and list object. That requires not only the allocation of memory, but changes the running time com-
plexity of the loop from linear to quadratic.

Secondly, the former example with car/cdr will not work correctly if the sequence is an empty non-list
sequence, like the null string or empty vector. Rectifying this problem requires the nullify function to be

Utility Commands 2021-07-12 119

TXR(1)

TXR Programming Language TXR(1)

used:
;7 print all symbols in the list (a b c d):

(let ((iter (nullify "abcd")))
(while iter
(prinl (car iter))
(set iter (cdr iter))))

The nullify function converts empty sequences of all kinds into the empty list nil.

Thirdly, the second example will work even if the input list is replaced with certain objects which are not
sequences at all:

;7 Print the integers from 0 to 3

(let ((iter (iter-begin 0..4)))
(while (iter—-more iter)
(prinl (iter-item iter))
(set iter (iter-step iter))))

;7 Print incrementing integers starting at 1,
;; breaking out of the loop after 100.

(let ((iter (iter-begin 1)))
(while (iter—-more iter)
(if (eql 100 (prinl (iter-item iter)))
(return))
(set iter (iter-step iter))))

In TXR Lisp, numerous functions that appear as list processing functions in other contemporary Lisp
dialects, and historically, are actually sequence processing functions based on the above iterator paradigm.

8.5 Callable Objects

In TXR Lisp, sequences (strings, vectors and lists) as well as hashes and regular expressions can be used as
functions everywhere, not just with the DWIM brackets.

Sequences work as one- or two-argument functions. With a single argument, an element is selected by posi-
tion and returned. With two arguments, a range is extracted and returned.

Moreover, when a sequence is used as a function of one argument, and the argument is a range object rather
than an integer, then the call is equivalent to the two-argument form. This is the basis for array slice syntax

like ["abc"™ 0..1]

Hashes also work as one or two argument functions, corresponding to the arguments of the gethash func-
tion.

A regular expression behaves as a one, two, or three argument function, which operates on a string argu-
ment. It returns the leftmost matching substring, or else nil.

Example 1:

(mapcar "abc" (2 0 1)) —> (#\c #\a #\b)

Utility Commands 2021-07-12 120

TXR(1) TXR Programming Language TXR(1)

Here, mapcar treats the string "abc" as a function of one argument (since there is one list argument).
This function maps the indices 0, 1 and 2 to the corresponding characters of string "abc". Through this
function, the list of integer indices (2 0 1) is taken to the list of characters (#\c #\a #\Db).

Example 2:

(call "(1 2 3 4) 1..3) —> (2 3)
Here, the shorthand 1 .. 3 denotes (rcons 1 3). A range used as an argument to a sequence per-
forms range extraction: taking a slice starting at index 1, up to and not including index 3, as if by the call
(sub " (1 2 3 4) 1 3).
Example 3:

(call "(1 2 3 4) (0 2)) —> (1 2)

A list of indices applied to a sequence is equivalent to using the select function, as if (select (1 2 3
4) " (0 2)) were called.

Example 4:
(call #/b./ "abcd") -> "bc"

Here, the regular expression, called as a function, finds the matching substring "bc" within the argument
"abcd".

8.6 Special Variables
Similarly to Common Lisp, TXR Lisp is lexically scoped by default, but also has dynamically scoped

(a.k.a "special") variables.

When a variable is defined with defvar or defparm, a binding for the symbol is introduced in the global
name space, regardless of in what scope the de fvar form occurs.

Furthermore, at the time the defvar form is evaluated, the symbol which names the variable is tagged as
special.

When a symbol is tagged as special, it behaves differently when it is used in a lexical binding construct like
let, and all other such constructs such as function parameter lists. Such a binding is not the usual lexical
binding, but a "rebinding" of the global variable. Over the dynamic scope of the form, the global variable
takes on the value given to it by the rebinding. When the form terminates, the prior value of the variable is
restored. (This is true no matter how the form terminates; even if by an exception.)

Because of this "pervasive special” behavior of a symbol that has been used as the name of a global vari-

able, a good practice is to make global variables have visually distinct names via the "earmuffs" convention:
beginning and ending the name with an asterisk.

Example:

(defvar *x* 42) ;7 *xX* has a value of 42

(defun print-x ()
(format t "“a\n" *x*))

(let ((*x* "abc")) ;; this overrides *x*

Utility Commands 2021-07-12 121

TXR(1)

TXR Programming Language TXR(1)
(print-x)) ;7 *x* is now "abc" and so that is printed
(print-x) ;7 *x* 1s 42 again and so "42" is printed

Dialect Note 1:

The terms bind and binding are used differently in TXR Lisp compared to ANSI Common Lisp.
In TXR Lisp binding is an association between a symbol and an abstract storage location. The
association is registered in some namespace, such as the global namespace or a lexical scope.
That storage location, in turn, contains a value. In ANSI Lisp, a binding of a dynamic variable is
the association between the symbol and a value. It is possible for a dynamic variable to exist, and
not have a value. A value can be assigned, which creates a binding. In TXR Lisp, an assignment
is an operation which transfers a value into a binding, not one which creates a binding.

In ANSI Lisp, a dynamic variable can exist which has no value. Accessing the value signals a con-
dition, but storing a value is permitted; doing so creates a binding. By contrast, in TXR Lisp a
global variable cannot exist without a value. If a defvar form doesn’t specify a value, and the
variable doesn’t exist, it is created with a value of nil.

Dialect Note 2:

Unlike ANSI Common Lisp, TXR Lisp has global lexical variables in addition to special vari-
ables. These are defined using defvarl and defparml. The only difference is that when vari-
ables are introduced by these macros, the symbols are not marked special, so their binding in lexi-
cal scopes is not altered to dynamic binding.

Many variables in TXR Lisp’s standard library are global lexicals. Those which are special vari-
ables obey the "earmuffs" convention in their naming. For instance s-ifmt, log-emerg and
sig-hup are global lexicals, because they provide constant values for which overriding doesn’t
make sense. On the other hand the standard output stream variable *stdout * is special. Overrid-
ing it over a dynamic scope is useful, as a means of redirecting the output of functions which write
to the *stdout * stream.

Dialect Note 3:

In Common Lisp, defparmis known as defparameter.

8.7 Syntactic Places and Accessors

The TXR Lisp feature known as syntactic places allows programs to use the syntax of a form which is
used to access a value from an environment or object, as an expression which denotes a place where a
value may be stored.

They are almost exactly the same concept as "generalized references" in Common Lisp, and are related to
"lvalues" in languages in the C family, or "designators” in Pascal.

8.7.1 Symbolic Places

A symbol is a is a syntactic place if it names a variable. If a is a variable, then it may be assigned using the
set operator: the form (set a 42) causes a to have the integer value 42.

8.7.2 Compound Places

A compound expression can be a syntactic place, if its leftmost constituent is as symbol which is specially
registered, and if the form has the correct syntax for that kind of place, and suitable semantics. Such an

Utility Commands 2021-07-12 122

TXR(1) TXR Programming Language TXR(1)

expression is a compound place.

An example of a compound place is a car form. If c is an expression denoting a cons cell, then (car
c) is not only an expression which retrieves the value of the car field of the cell. It is also a syntactic
place which denotes that field as a storage location. Consequently, the expression (set (car c)
"abc") stores the character string "abc" in that location. Although the same effect can be obtained
with (rplaca c "abc") the syntactic place frees the programmer from having to remember different
update functions for different kinds of places. There are various other advantages. TXR Lisp provides a
plethora of operators for modifying a place in addition to set. Subject to certain usage restrictions, these
operators work uniformly on all places. For instance, the expression (rotate (car x) [str 3] vy)
causes three different kinds of places to exchange contents, while the three expressions denoting those
places are evaluated only once. New kinds of place update macros like rotate are quite easily defined, as
are new kinds of compound places.

8.7.3 Accessor Functions

When a function call form such as the above (car x) is a syntactic place, then the function is called an
accessor. This term is used throughout this document to denote functions which have associated syntactic
places.

8.7.4 Macro Call Syntactic Places

Syntactic places can be macros (global and lexical), including symbol macros. So for instance in (set x
42) the x place can actually be a symbolic macro which expands to, say, (cdr y). This means that the
assignment is effectively (set (cdr y) 42).

8.7.5 User-Defined Syntactic Places and Place Operators

Syntactic places, as well as operators upon syntactic places, are both open-ended. Code can be written quite
easily in TXR Lisp to introduce new kinds of places, as well as new place-mutating operators. New places
can be introduced with the help of the defplace, define-accessor or defset macros, or possibly
the define-place-macro macro in simple cases when a new syntactic place can be expressed as a
transformation to the syntax of an existing place. Three ways exist for developing new place update macros
(place operators). They can be written using the ordinary macro definer ordinary macro definer def-
macro, with the help of special utility macros called with-update-expander, with-clobber—
expander, and with-delete-expander. They can also be written using defmacro in conjunction
with the operators placelet or placelet*. Simple update macros similar to inc and push can be
written compactly using define-modify-macro.

8.7.6 Deletable Places

Unlike generalized references in Common Lisp, TXR Lisp syntactic places support the concept of deletion.
Some kinds of places can be deleted, which is an action distinct from (but does not preclude) being over-
written with a value. What exactly it means for a place to be deleted, or whether that is even permitted,
depends on the kind of place. For instance a place which denotes a lexical variable may not be deleted,
whereas a global variable may be. A place which denotes a hash-table entry may be deleted, and results in
the entry being removed from the hash table. Deleting a place in a list causes the trailing items, if any, or
else the terminating atom, to move in to close the gap. Users may define new kinds of places which support
deletion semantics.

8.7.7 Evaluation of Places

To bring about their effect, place operators must evaluate one or more places. Moreover, some of them eval-
uate additional forms which are not places. Which arguments of a place operator form are places and which
are ordinary forms depends on its specific syntax. For all the built-in place operators, the position of an

Utility Commands 2021-07-12 123

TXR(1) TXR Programming Language TXR(1)

argument in the syntax determines whether it is treated as (and consequently required to be) a syntactic
place, or whether it is an ordinary form.

All built-in place operators perform the evaluation of place and non-place argument forms in strict left-to-
right order.

Place forms are evaluated not in order to compute a value, but in order to determine the storage location. In
addition to determining a storage location, the evaluation of a place form may possibly give rise to side
effects. Once a place is fully evaluated, the storage location can then be accessed. Access to the storage
location is not considered part of the evaluation of a place. To determine a storage location means to com-
pute some hidden referential object which provides subsequent access to that location without the need for
a reevaluation of the original place form. (The subsequent access to the place through this referential object
may still require a multi-step traversal of a data structure; minimizing such steps is a matter of optimiza-
tion.)

Place forms may themselves be compounds, which contain subexpressions that must be evaluated. All such
evaluation for the built-in places takes place in left to right order.

Certain place operators, such as shift and rotate, exhibit an unspecified behavior with regard to the
timing of the access of the prior value of a place, relative to the evaluation of places which occur later in the
same place operator form. Access to the prior values may be delayed until the entire form is evaluated, or it
may be interleaved into the evaluation of the form. For example, in the form (shift a b c 1), the
prior value of a can be accessed and saved as soon as a is evaluated, prior to the evaluation of b. Alterna-
tively, a may be accessed and saved later, after the evaluation of b or after the evaluation of all the forms.
This issue affects the behavior of place-modifying forms whose subforms contain side effects. It is recom-
mended that such forms not be used in programs.

8.7.8 Nested Places

Certain place forms are required to have one or more arguments which are themselves places. The prime
example of this, and the only example from among built-in syntactic places, are DWIM forms. A DWIM
form has the syntax

(dwim obj-place index [alt])
and the square-bracket-notation equivalent:
[obj-place index [alt]]

Note that not only is the entire form a place, denoting some element or element range of obj-place, but
there is the added constraint that ob j—place must also itself be a syntactic place.

This requirement is necessary, because it supports the behavior that when the element or element range is
updated, then obj-place is also potentially updated.

After the assignment (set [obj 0..3] ' ("forty" "two")) not only is the range of places
denoted by [obj 0. .3] replaced by the list of strings ("forty" "two") but obj may also be over-
written with a new value.

This behavior is necessary because the DWIM brackets notation maintains the illusion of an encapsulated
array-like container over several dissimilar types, including Lisp lists. But Lisp lists do not behave as fully
encapsulated containers. Some mutations on Lisp lists return new objects, which then have to stored (or
otherwise accepted) in place of the original objects in order to maintain the array-like container illusion.

Utility Commands 2021-07-12 124

TXR(1) TXR Programming Language

8.7.9 Built-In Syntactic Places

TXR(1)

The following is a summary of the built-in place forms, in addition to symbolic places denoting variables.

New syntactic place forms can be defined by TXR programs.

(car object)
(first object)
(rest object)
(second object)
(third object)

(tenth object)

(last object [num])
(butlast object [num])
(cdr object)

(caar object)

(cadr object)

(cdar object)

(cddr object)

(cdddddr object)

(nthcdr index obj)
(nthlast index obj)
(butlastn num obj)

(last num obj)

(nth index ob3j)

(ref seq idx)

(sub sequence [from [to]l])
(vecref vec idx)

(chr—-str str idx)

(gethash hash key [alt])
(hash-userdata hash)

(dwim obj-place index [alt])

(sub-list obj [from [tol])

(sub-vec obj [from [tol])

(sub-str str [from [tol])

[obj-place index [alt]] ;; equivalent to dwim
(symbol-value symbol-valued-form)
(symbol-function function—-name-valued-form)
(symbol-macro symbol-valued-form)

(fun function-—name)

(force promise)

(errno)

(slot struct-obj slot—-name-valued-form)

(

struct-obj.slot—-name ;; equivalent to gref
sock—-peer socket)

carray-sub carray [from [to]l])

sub-buf buf [from [tol])

left node)

right node)

(
(
(
(
(
(key node)

Utility Commands 2021-07-12

qgref struct-obj slot-name) ;; by macro-expansion to

125

TXR(1) TXR Programming Language TXR(1)

8.7.10 Built-In Place-Mutating Operators

The following is a summary of the built-in place mutating macros. They are described in detail in their own
sections.

(set {place new-value}¥*)
Assigns the values of expressions to places, performing assignments in left-to-right order, return-
ing the value assigned to the rightmost place.

(pset {place new-value}*)
Assigns the values of expressions to places, performing the determination of places and evaluation

of the expressions left to right, but the assignment in parallel. Returns the value assigned to the
rightmost place.

(zap place [new-value])
Assigns new-value to place, defaulting to nil, and returns the prior value.

(flip place)
Logically toggles the Boolean value of place, and returns the new value.

(test—-set place)

If place contains nil, stores t into the place and returns t to indicate that the store took place.
Otherwise does nothing and returns nil.

(test—-clear place)
If place contains a Boolean true value, stores nil into the place and returns t to indicate that
the store took place. Otherwise does nothing and returns nil.

(compare—-swap place cmp—-fun cmp-val store-val)
Examines the value of place and compares it to cmp-val using the comparison function given
by the function name cmp-fun. If the comparison is false, returns nil. Otherwise, stores the
store-val value into place and returns t.

(inc place [deltal)
Increments place by delta, which defaults to 1, and returns the new value.

(dec place [deltal])
Decrements place by delta, which defaults to 1, and returns the new value.

(pinc place [deltal)
Increments place by delta, which defaults to 1, and returns the old value.

(pdec place [deltal)
Decrements place by delta, which defaults to 1, and returns the old value.

(test—-inc place [delta [from-valll)
Increments place by delta and returns t if the previous value was eql to from-val, where
delta defaults to 1 and from—val defaults to zero.

Utility Commands 2021-07-12 126

TXR(1)

TXR Programming Language TXR(1)

(test—-dec place [delta [to-val]ll)
Decrements place by delta and returns t if the new value is eql to to-val, where delta
defaults to 1 and to-val defaults to 0.

(swap left-place right-place)
Exchanges the values of left-placeand right-place.

(push item place)
Adds item to the front of the list which is currently stored in place, then stores the extended list
back into place and returns it.

(pop place)
Pop the list stored in place and returns the popped value.

(shift place+ shift-in-value)
Treats one or more places as a "multi-place shift register”. Values are shifted to the left among the
places. The rightmost place receives shift-in-value, and the value of the leftmost place
emerges as the return value.

(rotate place¥*)
Treats zero or more places as a "multi-place rotate register". The places exchange values among
themselves, by a rotation by one place to the left. The value of the leftmost place goes to the right-
most place, and that value is returned.

(del place)
Deletes a place which supports deletion, and returns the value which existed in that place prior to
deletion.

(lset {placel+ list-expr)
Sets multiple places to values obtained from successive elements of sequence.

(upd place opip-arg*)
Applies an opip-style operational pipeline to the value of place and stores the result back into
place.

8.8 Namespaces and Environments

TXR Lisp is a Lisp-2 dialect: it features separate namespaces for functions and variables.

8.8.1 Global Functions and Operator Macros

In TXR Lisp, global functions and operator macros coexist, meaning that the same symbol can be defined
as both a macro and a function.

There is a global namespace for functions, into which functions can be introduced with the de fun macro.
The global function environment can be inspected and modified using the symbol-function accessor.

There is a global namespace for macros, into which macros are introduced with the de fmacro macro. The
global function environment can be inspected and modified using the symbol-macro accessor.

If a name x is defined as both a function and a macro, then an expression of the form (x ...) is

Utility Commands 2021-07-12 127

TXR(1) TXR Programming Language TXR(1)

expanded by the macro, whereas an expression of the form [x ...] refers to the function. Moreover, the
macro can produce a call to the function. The expression (fun x) will retrieve the function object.

8.8.2 Global and Dynamic Variables

There is a global namespace for variables also. The operators defvar and defparm introduce bindings
into this namespace. These operators have the side effect of marking a symbol as a special variable, of the
symbol are treated as dynamic variables, subject to rebinding. The global variable namespace together with
the special dynamic rebinding is called the dynamic environment. The dynamic environment can be
inspected and modified using the symbol-value accessor.

The operators defvarl and defparml introduce bindings into the global namespace without marking
symbols as special variables. Such bindings are called global lexical variables.

8.8.3 Global Symbol Macros

Symbol macros may be defined over the global variable namespace using defsymacro.

Note that whereas a symbol may simultaneously have both a function and macro binding in the global
namespace, a symbol may not simultaneously have a variable and symbol macro binding.

8.8.4 Lexical Environments

In addition to global and dynamic namespaces, TXR Lisp provides lexically scoped binding for functions,
variables, macros, and symbol macros. Lexical variable binding are introduced with let, 1et* or various
binding macros derived from these. Lexical functions are bound with flet and labels. Lexical macros
are established with macrolet and lexical symbol macros with symacrolet.

Macros receive an environment parameter with which they may expand forms in their correct environment,
and perform some limited introspection over that environment in order to determine the nature of bindings,
or the classification of forms in those environments. This introspection is provided by lexical-var-p,
lexical-fun-p,and lexical-lispl-binding.

Lexical operator macros and lexical functions can also coexist in the following way. A lexical function
shadows a global or lexical macro completely. However, the reverse is not the case. A lexical macro shad-
ows only those uses of a function which look like macro calls. This is succinctly demonstrated by the fol-
lowing form:

(flet ((foo () 43))
(macrolet ((foo () 44))
(list (fun foo) (foo) [fool)))
-> (#<interpreted fun: lambda nil> 44 43)
The (fun foo) and [fun] expressions are oblivious to the macro; the macro expansion process process
the symbol foo in those contexts. However the form (foo) is subject to macro-expansion and replaced
with 44.
If the flet and macrolet are reversed, the behavior is different:
(macrolet ((foo () 44))
(flet ((foo () 43))
(list (fun foo) (foo) [fool)))

-> (#<interpreted fun: lambda nil> 43 43)

Utility Commands 2021-07-12 128

TXR(1) TXR Programming Language TXR(1)

All three forms refer to the function, which lexically shadows the macro.

8.8.5 Pattern Language and Lisp Scope Nesting

TXR Lisp expressions can be embedded in the TXR pattern language in various ways. Likewise, the pat-
tern language can be invoked from TXR Lisp. This brings about the possibility that Lisp code attempts to
access pattern variables bound in the pattern language. The TXR pattern language can also attempt to
access TXR Lisp variables.

The rules are as follows, but they have undergone historic changes. See the COMPATIBILITY section, in
particular notes under 138 and 121, and also 124.

A Lisp expression evaluated from the TXR pattern language executes in a null lexical environment. The
current set of pattern variables captured up to that point by the pattern language are installed as dynamic
variables. They shadow any Lisp global variables (whether those are defined by defvar or defvarl).

In the reverse direction, a variable reference from the TXR pattern language searches the pattern variable
space first. If a variable doesn’t exist there, then the lookup refers to the TXR Lisp global variable space.
The pattern language doesn’t see Lisp lexical variables.

When Lisp code is evaluated from the pattern language, the pattern variable bindings are not only installed
as dynamic variables for the sake of their visibility from Lisp, but they are also specially stored in a
dynamic environment frame. When TXR pattern code is reentered from Lisp, these bindings are picked up
from the closest such environment frame, allowing the nested invocation of pattern code to continue with
the bindings captured by outer pattern code.

Concisely, in any context in which a symbol has both a binding as a Lisp global variable as well as a pattern
variable, that symbol refers to the pattern variable. Pattern variables are propagated through Lisp evaluation
into nested invocations of the pattern language.

The pattern language can also reference Lisp variables using the @ prefix, which is a consequence of that
prefix introducing an expression that is evaluated as Lisp, the name of a variable being such an expression.

9 LISP OPERATOR, FUNCTION AND MACRO REFERENCE
9.1 Conventions

The following sections list all of the special operators, macros and functions in TXR Lisp.

In these sections, syntax is indicated using these conventions:

word A symbol in fixed-width-italic font denotes some syntactic unit: it may be a symbol or
compound form. The syntactic unit is explained in the corresponding Description section.

{syntax}* word*
This indicates a repetition of zero or more of the given syntax enclosed in the braces or syntactic
unit. The curly braces may be omitted if the scope of the * is clear.

{syntax}+ word+
This indicates a repetition of one or more of the given syntax enclosed in the braces or syntactic
unit. The curly braces may be omitted if the scope of the + is clear.

Utility Commands 2021-07-12 129

TXR(1)

TXR Programming Language TXR(1)

{syntax | syntax | -
This indicates a single, mandatory element, which is selected from among the indicated alterna-
tives. May be combined with + or * repetition.

[syntax] [word]
Square brackets indicate optional syntax.

[syntax | syntax | —
Square brackets containing piped elements indicate an optional element, which, if present, must be
chosen from among the indicated alternatives.

14 [l 14] 14
The quoted square brackets indicate literal brackets which appear in the syntax, which they do
without quotes. For instance ' [foo [bar 1’1’ is a pattern denotes the two possible
expressions [foo] and [foo bar].

syntax -> result
The arrow notation is used in examples to indicate that the evaluation of the given syntax produces
a value, whose printed representation is result.

9.2 Form Evaluation

A compound expression with a symbol as its first element, if intended to be evaluated, denotes either an
operator invocation or a function call. This depends on whether the symbol names an operator or a function.

When the form is an operator invocation, the interpretation of the meaning of that form is under the com-
plete control of that operator.

If the compound form is a function call, the remaining forms, if any, denote argument expressions to the
function. They are evaluated in left-to-right order to produce the argument values, which are passed to the
function. An exception is thrown if there are not enough arguments, or too many. Programs can define
named functions with the defun operator

Some operators are macros. There exist predefined macros in the library, and macro operators can also be
user-defined using the macro-defining operator defmacro. Operators that are not macros are called spe-
cial operators.

Macro operators work as functions which are given the source code of the form. They analyze the form,
and translate it to another form which is substituted in their place. This happens during a code walking
phase called the expansion phase, which is applied to each top-level expression prior to evaluation. All
macros occurring in a form are expanded in the expansion phase, and subsequent evaluation takes place on
a structure which is devoid of macros. All that remains are the executable forms of special operators, func-
tion calls, symbols denoting either variables or themselves, and atoms such as numeric and string literals.

Special operators can also perform code transformations during the expansion phase, but that is not consid-
ered macroexpansion, but rather an adjustment of the representation of the operator into an required exe-
cutable form. In effect, it is post-macro compilation phase.

Note that Lisp forms occurring in TXR pattern language are not individual top-level forms. Rather, the
entire TXR query is parsed at the same time, and the macros occurring in its Lisp forms are expanded at
that time.

Utility Commands 2021-07-12 130

TXR(1)

TXR Programming Language TXR(1)

9.2.1 Operator quote

Syntax:
(quote form)
Description:
The quote operator, when evaluated, suppresses the evaluation of form, and instead returns
form itself as an object. For example, if form is a symbol sym, then the value of (quote
sym) is symitself. Without quote, sym would evaluate to the value held by the variable which
is named sym, or else throw an error if there is no such variable. The quote operator never
raises an error, if it is given exactly one argument, as required.
The notation ’ obj is translated to the object (quote ob3j) providing a shorthand for quoting.
Likewise, when an object of the form (quote ob3j) is printed, it appears as ' obj.
Example:
;7 ylelds symbol a itself, not value of variable a
(quote a) -> a
;7 yilelds three-element list (+ 2 2), not 4.
(quote (+ 2 2)) —> (+ 2 2)
9.3 Variable Binding

Variables are associations between symbols and storage locations which hold values. These associations are
called bindings.

Bindings are held in a context called an environment.

Lexical environments hold local variables, and nest according to the syntactic structure of the program.
Lexical bindings are always introduced by a some form known as a binding construct, and the correspond-
ing environment is instantiated during the evaluation of that construct. There also exist bindings outside of
any binding construct, in the so-called global environment . Bindings in the global environment can be
temporarily shadowed by lexically-established binding in the dynamic environment . See the Special Vari-
ables section above.

Certain special symbols cannot be used as variable names, namely the symbols t and nil, and all of the
keyword symbols (symbols in the keyword package), which are denoted by a leading colon. When any of
these symbols is evaluated as a form, the resulting value is that symbol itself. It is said that these special
symbols are self-evaluating or self-quoting, similarly to all other atom objects such as numbers or strings.

When a form consisting of a symbol, other than the above special symbols, is evaluated, it is treated as a
variable, and yields the value of the variable’s storage location. If the variable doesn’t exist, an exception is
thrown.

Note: symbol forms may also denote invocations of symbol macros. (See the operators defsymacro and
symacrolet). All macros, including symbol macros, which occur inside a form are fully expanded prior
to the evaluation of a form, therefore evaluation does not consider the possibility of a symbol being a sym-
bol macro.

9.3.1 Operator defvar and macro defparm

Syntax:

Utility Commands 2021-07-12 131

TXR(1)

TXR Programming Language TXR(1)

(defvar sym [value])
(defparm sym value)

Description:

The defvar operator binds a name in the variable namespace of the global environment. Bind-
ing a name means creating a binding: recording, in some namespace of some environment, an
association between a name and some named entity. In the case of a variable binding, that entity is
a storage location for a value. The value of a variable is that which has most recently been written
into the storage location, and is also said to be a value of the binding, or stored in the binding.

If the variable named sym already exists in the global environment, the form has no effect; the
value form is not evaluated, and the value of the variable is unchanged.

If the variable does not exist, then a new binding is introduced, with a value given by evaluating
the value form. If the form is absent, the variable is initialized to nil.

The value form is evaluated in the environment in which the de fvar form occurs, not necessar-
ily in the global environment.

The symbols t and nil may not be used as variables, nor can they be keyword symbols (symbols
denoted by a leading colon).

In addition to creating a binding, the defvar operator also marks sym as the name of a special
variable. This changes what it means to bind that symbol in a lexical binding construct such as the
let operator, or a function parameter list. See the section "Special Variables" far above.

The de fparm macro behaves like defvar when a variable named sym doesn’t already exist.

If sym already denotes a variable binding in the global namespace, defparm evaluates the
value form and assigns the resulting value to the variable.

The following equivalence holds:
(defparm x y) <—-—> (progl (defvar x) (set x vy))

The defvar and defparm forms return sym.

9.3.2 Macros defvarl and defparml

Syntax:

(defvarl sym [valuel)
(defparml sym value)

Description:

The defvarl and defparml macros behave, respectively, almost exactly like defvar and
defparm.

The difference is that these operators do not mark sym as special.

If a global variable sym does not previously exist, then after the evaluation of either of these forms
(boundp sym) istrue, but (special-var-p sym) isn’t.

If sym had been already introduced as a special variable, it stays that way after the evaluation of
defvarl or defparml.

Utility Commands 2021-07-12 132

TXR(1) TXR Programming Language TXR(1)

9.3.3 Operators let and let*
Syntax:

(let ({sym | (sym init—form)}*) body—-form*)
(let* ({sym | (sym init—form)}*) body—-form*)

Description:

The let and let* operators introduce a new scope with variables and evaluate forms in that
scope. The operator symbol, either 1et or let*, is followed by a list which can contain any mix-
ture of symor (sym init-form) pairs. Each sym must be a symbol, and specifies the name
of variable to be instantiated and initialized.

The (sym init-form) variant specifies that the new variable sym receives an initial value
from the evaluation of init-form. The plain sym variant specifies a variable which is initial-
izedtonil. The init-forms are evaluated in order, by both 1et and let*.

The symbols t and nil may not be used as variables, and neither can be keyword symbols: sym-
bols denoted by a leading colon.

The difference between let and let* is that in let*, later init—-forms are in scope of the
variables established by earlier variables in the same let* construct. In plain let, the init—
forms are evaluated in a scope which does not include any of the variables.

When the variables are established, the body—forms are evaluated in order. The value of the last
body-form becomes the return value of the let. If there are no body—forms, then the return
value nil is produced.

The list of variables may be empty.

The list of variables may contain duplicate syms if the operator is 1et *. In that situation, a given
init-form has in scope the rightmost duplicate of any given sym that has been previously
established. The body—forms have in scope the rightmost duplicate of any sym in the construct.
Therefore, the following form calculates the value 3:

(let* ((a 1)
(a (succ a))
(a (succ a)))
a)

Each duplicate is a separately instantiated binding, and may be independently captured by a lexical
closure placed in a subsequent init-form:
(let* ((a 0)
fl1 (lambda () (inc a)))
a 0)
f2 (lambda () (inc a))))
(list [£f1]1 [£11 [£f1]1 [£f2] [£f2] [£f2]))

(
(
(
(

-—> (1 2 31 2 3)
The preceding example shows that there are two mutable variables named a in independent
scopes, each respectively captured by the separate closures £1 and £2. Three calls to £1 incre-

ment the first a while the second a retains its initial value.

Under let, the behavior of duplicate variables is unspecified.

Utility Commands 2021-07-12 133

TXR(1)

TXR Programming Language TXR(1)

Implementation note: the TXR compiler diagnoses and rejects duplicate symbols in 1et whereas
the interpreter ignores the situation.

When the names of a special variables is specified in 1et or let* remain, a new binding is cre-
ated for them in the dynamic environment, rather than the lexical environment. In let*, later
init-forms are evaluated in a dynamic scope in which previous dynamic variables are estab-
lished, and later dynamic variables are not yet established. A special variable may appear multiple
times in a 1et*, just like a lexical variable. Each duplicate occurrence extends the dynamic envi-
ronment with a new dynamic binding. All these dynamic environments are removed when the
let or let* form terminates. Dynamic environments aren’t captured by lexical closures, but are
captured in delimited continuations.

Examples:

let ((a 1) (b 2)) (list a b)) -> (1 2)

let* ((a 1) (b (+ a 1))) (list a b (+ a b))) -> (1 2 3)

let ()) -> nil

let (:a nil)) -> error, :a and nil can’t be used as variables

9.4 Functions

9.4.1 Operator defun

Syntax:

(defun name (param* [: opt—-param*] [. rest—-param])
body—-form)

Description:

The de fun operator introduces a new function in the global function namespace. The function is
similar to a lambda, and has the same parameter syntax and semantics as the 1ambda operator.

Note that the above syntax synopsis describes only the canonical parameter syntax which remains
after parameter list macros are expanded. See the section Parameter List Macros.

Unlike in 1ambda, the body-forms of a defun are surrounded by a block. The name of this
block is the same as the name of the function, making it possible to terminate the function and
return a value using (return-from name value). For more information, see the defini-
tion of the block operator.

A function may call itself by name, allowing for recursion.

The special symbols t and nil may not be used as function names. Neither can keyword sym-
bols.

It is possible to define methods as well as macros with defun, as an alternative to the defmeth
and defmacro forms.

To define a method, the syntax (meth type name) should be used as the argument to the
name parameter. This gives rise to the syntax (defun (meth type name) args form*)
which is equivalent to the (defmeth type name args form*) syntax.

Macros can be defined using (macro name) as the name parameter of defun. This way of
defining a macro doesn’t support destructuring; it defines the expander as an ordinary function
with an ordinary argument list. To work, the function must accept two arguments: the entire macro
call form that is to be expanded, and the macro environment. Thus, the macro definition syntax is

Utility Commands 2021-07-12 134

TXR(1)

TXR Programming Language TXR(1)
(defun (macro name) form env form*) which is equivalent to the (defmacro
name (:form form :env env) form*) syntax.
Dialect Note:
In ANSI Common Lisp, keywords may be used as function names. In TXR Lisp, they may not.
Dialect Note:

A function defined by defun may coexist with a macro defined by defmacro. This is not per-
mitted in ANSI Common Lisp.

9.4.2 Operator lambda

Syntax:
(lambda (param* [: opt-param*] [. rest—-param])
body—-form)
(lambda rest-param
body—-form)
Description:

The lambda operator produces a value which is a function. Like in most other Lisps, functions
are objects in TXR Lisp. They can be passed to functions as arguments, returned from functions,
aggregated into lists, stored in variables, etc.

Note that the above syntax synopsis describes only the canonical parameter syntax which remains
after parameter list macros are expanded. See the section Parameter List Macros.

The first argument of lambda is the list of parameters for the function. It may be empty, and it
may also be an improper list (dot notation) where the terminating atom is a symbol other than
nil. Itcan also be a single symbol.

The second and subsequent arguments are the forms making up the function body. The body may
be empty.

When a function is called, the parameters are instantiated as variables that are visible to the body
forms. The variables are initialized from the values of the argument expressions appearing in the
function call.

The dotted notation can be used to write a function that accepts a variable number of arguments.
There are two ways write a function that accepts only a variable argument list and no required
arguments:

(lambda (. rest-param) ...)
(lambda rest-param ...)

(These notations are syntactically equivalent because the list notation (. X) actually denotes the
object X which isn’t wrapped in any list).

The keyword symbol : (colon) can appear in the parameter list. This is the symbol in the keyword
package whose name is the empty string. This symbol is treated specially: it serves as a separator
between required parameters and optional parameters. Furthermore, the : symbol has a role to
play in function calls: it can be specified as an argument value to an optional parameter by which
the caller indicates that the optional argument is not being specified. It will be processed exactly

Utility Commands 2021-07-12 135

TXR(1)

TXR Programming Language TXR(1)

that way.

An optional parameter can also be written in the form (name expr [sym]). In this situa-
tion, if the call does not specify a value for the parameter, or specifies a value as the : (colon) key-
word symbol, then the parameter takes on the value of the expression expr. This expression is
only evaluated when its value is required.

If sym is specified, then sym will be introduced as an additional binding with a Boolean value
which indicates whether or not the optional parameter had been specified by the caller.

Each expr that is evaluated is evaluated an environment in which all of the previous parameters
are visible, in addition to the surrounding environment of the 1ambda. For instance:

(let ((default 0))
(lambda (str : (end (length str)) (counter default))
(list str end counter)))

In this 1ambda, the initializing expression for the optional parameter end is (length str),
and the str variable it refers to is the previous argument. The initializer for the optional variable
counter is the expression default, and it refers to the binding established by the surrounding let.
This reference is captured as part of the 1ambda’s lexical closure.

Keyword symbols, and the symbols t and nil may not be used as parameter names. The behav-
ior is unspecified if the same symbol is specified more than once anywhere in the parameter list,
whether as a parameter name or as the indicator sym in an optional parameter or any combination.

Implementation note: the TXR compiler diagnoses and rejects duplicate symbols in lambda
whereas the interpreter ignores the situation.

Note: it is not always necessary to use the 1ambda operator directly in order to produce an anony-
mous function.

In situations when 1ambda is being written in order to simulate partial evaluation, it may be pos-
sible to instead make use of the op macro. For instance the function (lambda (. args)
[apply + a args]) which adds the values of all of its arguments together, and to the lexi-
cally captured variable a can be written more succinctly as (op + a). The op operator is the
main representative of a family of operators: 1op, ap, ip, do, ado, opip and cand.

In situations when functions are simply combined together, the effect may be achieved using some
of the available functional combinators, instead of a lambda. For instance chaining together
functions as in (lambda (x) (square (cos x))) is achievable using the chain func-
tion: [chain cos square]. The opip operator can also be used: (opip cos square).
Numerous combinators are available; see the section Partial Evaluation and Combinators.

When a function is needed which accesses an object, there are also alternatives. Instead of
(lambda (obj) obj.slot) and (lambda (obj arg) obj. (slot arg)), itissim-
pler to use the . slot and . (slot arg) notations. See the section Unbound Referencing Dot.
Also see the functions umethod and uslot as well as the related convenience macros umeth
and usl.

If a function is needed which partially applies, to some arguments, a method invoked on a specific
object, the method function or meth macro may be used. For instance, instead of (lambda
(arg) obj. (method 3 arg)), itis possible to write (meth obJj 3) except that the lat-
ter produces a variadic function.

Utility Commands 2021-07-12 136

TXR(1) TXR Programming Language TXR(1)

Examples:

Counting function:
This function, which takes no arguments, captures the variable counter. Whenever this object is
called, it increments counter by 1 and returns the incremented value.

(let ((counter 0))
(lambda () (inc counter)))

Function that takes two or more arguments:
The third and subsequent arguments are aggregated into a list passed as the single parameter z:

(lambda (x y . z) (list ’'my-arguments-—-are x y z))

Variadic function:
(lambda args (list 'my-list-of-arguments args))

Optional arguments:
[(lambda (x : y) (list x y)) 11 -> (1 nil)
[(lambda (x : y) (list x y)) 1 21 -> (1 2)

9.4.3 Macros flet and labels

Syntax:
(flet ({ (name param—-list function-body-form*)}¥*)
body—-form*)
(labels ({ (name param—-list function-body-form*)}¥*)
body—-form*)
Description:

The flet and labels macros bind local, named functions in the lexical scope.

Note that the above syntax synopsis describes only the canonical parameter syntax which remains
after parameter list macros are expanded. See the section Parameter List Macros.

The difference between flet and labels is that a function defined by labels can see itself,
and therefore recurse directly by name. Moreover, if multiple functions are defined by the same
labels construct, they all have each other’s names in scope of their bodies. By contrast, a flet-
defined function does not have itself in scope and cannot recurse. Multiple functions in the same
flet do not have each other’s names in their scopes.

More formally, the function-body-forms and param—-1ist of the functions defined by
labels are in a scope in which all of the function names being defined by that same labels
construct are visible.

Under both labels and flet, the local functions that are defined are lexically visible to the
main body-forms.

Note that 1abels and flet are properly scoped with regard to macros. During macro expan-

sion, function bindings introduced by these macro operators shadow macros defined by macro-
let and defmacro.

Utility Commands 2021-07-12 137

TXR(1) TXR Programming Language TXR(1)

Furthermore, function bindings introduced by labels and flet also shadow symbol macros
defined by symacrolet, when those symbol macros occur as arguments of a dwim form.

See also: the macrolet operator.

Dialect Note:

The flet and labels macros do not establish named blocks around the body forms of the local
functions which they bind. This differs from ANSI Common Lisp, whose local function have
implicit named blocks, allowing for return-from to be used.

Examples:

;7 Wastefully slow algorithm for determining evenness.

;; Note:

;; — mutual recursion between labels-defined functions
;; — 1lnner is-even bound by labels shadows the outer
HH one bound by defun so the (is-even n) call goes
HH to the local function.

(defun is—-even (n)

(labels ((is—even (n)
(if (zerop n) t (is-odd (- n 1))))
(is-odd (n)
(if (zerop n) nil (is-even (- n 1)))))

(is—even n)))

9.4.4 Function call
Syntax:
(call function argument*)

Description:

The call function invokes function, passing it the given arguments, if any.

Examples:

Apply lambda to 1 2 arguments, adding them to produce 3:
(call (lambda (a b) (+ a b)) 1 2)
Useless use of call on a named function; equivalentto (1list 1 2):

(call (fun list) 1 2)

9.4.5 Functions apply and iapply
Syntax:

(apply function [arg* trailing—-argsl])
(iapply function [arg* trailing-args])

Description:

The apply function invokes function, optionally passing to it an argument list. The return
value of the apply call is that of function.

Utility Commands 2021-07-12 138

TXR(1) TXR Programming Language TXR(1)

If no arguments are present after function, then function is invoked without arguments.

If one argument is present after function, then it is interpreted as trailing-args. If this is
a sequence (a list, vector or string), then the elements of the sequence are passed as individual
arguments to function. If trailing-args is not a sequence, then function is invoked
with an improper argument list, terminated by the t railing-args atom.

If two or more arguments are present after function, then the last of these arguments is inter-
preted as trailing-args. The previous arguments represent leading arguments which are
applied to function, prior to the arguments taken from trailing-args.

Note that if trailing—-args value is an atom or an improper list, the function is then invoked
with an improper argument list. Only a variadic function may be invoked with an improper argu-
ment lists. Moreover, all of the function’s required and optional parameters must be satisfied by
elements of the improper list, such that the terminating atom either matches the rest-param
directly (see the 1ambda operator) or else the rest -param receives an improper list terminated
by that atom. To treat the terminating atom of an improper list as an ordinary element which can
satisfy a required or optional function parameter, the iapply function may be used, described
next.

The iapply function ("improper apply") is similar to apply, except with regard to the treatment
of trailing—-args. Firstly, under iapply, if trailing-args is an atom other than nil
(possibly a sequence, such as a vector or string), then it is treated as an ordinary argument: func—
tionis invoked with a proper argument list, whose last element is t railing-args. Secondly,
if trailing-args is a list, but an improper list, then the terminating atom of trailing-
args becomes an individual argument. This terminating atom is not split into multiple argu-
ments, even if it is a sequence. Thus, in all possible cases, 1apply treats an extra non-nil atom
as an argument, and never calls funct ion with an improper argument list.

Examples:
;7 (1 2 3) becomes arguments to list, thus (list 1 2 3).
(apply (fun list) (1 2 3)) -> (1 2 3)
;7 this effectively invokes (list 1 2 3 4)
(apply (fun list) 1 2 7 (3 4)) -> (1 2 3 4)
;7 this effectively invokes (list 1 2 . 3)
(apply (fun list) 1 2 3)) -> (1 2 . 3)
;7 "abc" is separated into characters
;7 which become arguments of list
(apply (fun list) "abc") -> (#\a #\b #\c)
Dialect Note:

Note that some uses of this function that are necessary in other Lisp dialects are not necessary in
TXR Lisp. The reason is that in TXR Lisp, improper list syntax is accepted as a compound form,
and performs application:

(foo a b . x)
Here, the variables a and b supply the first two arguments for foo. In the dotted position, x must

evaluate to a list or vector. The list or vector’s elements are pulled out and treated as additional
arguments for foo. This syntax can only be used if x is a symbolic form or an atom. It cannot be

Utility Commands 2021-07-12 139

TXR(1)

TXR Programming Language TXR(1)

a compound form, because (foo a b . (x)) and (foo a b x) are equivalent structures.

9.4.6 Operator fun

Syntax:
(fun function-—name)
Description:
The fun operator retrieves the function object corresponding to a named function in the current
lexical environment.
The function-name may be a symbol denoting a named function: a built in function, or one
defined by defun.
The function—-name may also take any of the forms specified in the description of the func-
get—name function. If such a function-name refers to a function which exists, then the fun
operator yields that function.
Note: the fun operator does not see macro bindings via their symbolic names with which they are
defined by defmacro. However, the name syntax (macro name) may be used to refer to
macros. This syntax is documented in the description of func-get-name. It is also possible to
retrieve a global macro expander using the function symbol-macro.
9.4.7 Operator dwim
Syntax:
(dwim argument¥)
"["argument*’]’
(set (dwim obj-place index [alt]) new-value)
(set " ["obj-place index [alt]’]’' new-value)
Description:

The dwim operator’s name is an acronym: DWIM may be taken to mean "Do What I Mean", or
alternatively, "Dispatch, in a Way that is Intelligent and Meaningful".

The notation [...] is ashorthand which denotes (dwim ...).

Note that since the [and] are used in this document for indicating optional syntax, in the above
Syntax synopsis the quoted notation ’ [/ and ’]’ denotes bracket tokens which literally appear in
the syntax.

The dwim operator takes a variable number of arguments, which are treated as expressions to be
individually macro-expanded and evaluated, using the same rules.

This means that the first argument isn’t a function name, but an ordinary expression which can
simply compute a function object (or, more generally, a callable object).

Furthermore, for those arguments of dwim which are symbols (after all macro-expansion is per-
formed), the evaluation rules are altered. For the purposes of resolving symbols to values, the
function and variable binding namespaces are considered to be merged into a single space, creat-
ing a situation that is similar to a Lisp-1 style dialect.

This special Lisp-1 evaluation is not recursively applied. All arguments of dwim which, after
macro expansion, are not symbols are evaluated using the normal Lisp-2 evaluation rules. Thus,

Utility Commands 2021-07-12 140

TXR(1)

TXR Programming Language TXR(1)

the DWIM operator must be used in every expression where the Lisp-1 rules for reducing symbols
to values are desired.

If a symbol has bindings both in the variable and function namespace in scope, and is referenced
by a dwim argument, this constitutes a conflict which is resolved according to two rules. When
nested scopes are concerned, then an inner binding shadows an outer binding, regardless of their
kind. An inner variable binding for a symbol shadows an outer or global function binding, and
vice versa.

If a symbol is bound to both a function and variable in the global namespace, then the variable
binding is favored.

Macros do not participate in the special scope conflation, with one exception. What this means is
that the space of symbol macros is not folded together with the space of operator macros. An argu-
ment of dwim that is a symbol might be symbol macro, variable or function, but it cannot be inter-
preted as the name of a operator macro.

The exception is this: from the perspective of a dwim form, function bindings can shadow symbol
macros. If a function binding is defined in an inner scope relative to a symbol macro for the same
symbol, using flet or labels, the function hides the symbol macro. In other words, when
macro expansion processes an argument of a dwim form, and that argument is a symbol, it is
treated specially in order to provide a consistent name lookup behavior. If the innermost binding
for that symbol is a function binding, it refers to that function binding, even if a more outer symbol
macro binding exists, and so the symbol is not expanded using the symbol macro. By contrast, in
an ordinary form, a symbolic argument never resolves to a function binding. The symbol refers to
either a symbol macro or a variable, whichever is nested closer.

If, after macro expansion, the leftmost argument of the dwim is the name of a special operator or
macro, the dwim form doesn’t denote an invocation of that operator or macro. A dwim form is an
invocation of the dwim operator, and the leftmost argument of that operator, if it is a symbol, is
treated as a binding to be resolved in the variable or function namespace, like any other argument.
Thus [1f x y] is an invocation of the i f function, not the i f operator.

How many arguments are required by the dwim operator depends on the type of object to which
the first argument expression evaluates. The possibilities are:

[function argument*]
Call the given function object with the given arguments.

[symbol argument*]
If the first expression evaluates to a symbol, that symbol is resolved in the function
namespace, and then the resulting function, if found, is called with the given arguments.

[sequence index]
Retrieve an element from sequence, at the specified index, which is a nonnegative
integer.

This form is also a syntactic place. If a value is stored to this place, it replaces the ele-
ment.

The place may also be deleted, which has the effect of removing the element from the
sequence, shifting the elements at higher indices, if any, down one element position, and
shortening the sequence by one. If the place is deleted, and if sequence is a list, then
the sequence form itself must be a place.

Utility Commands 2021-07-12 141

TXR(1) TXR Programming Language TXR(1)

[sequence from—-index..to-below-index]
Retrieve the specified range of elements. The range of elements is specified in the from
and to fields of a range object. The . . (dotdot) syntactic sugar denotes the construction
of the range object via the rcons function. See the section on Range Indexing below.

This form is also a syntactic place. Storing a value in this place has the effect of replac-
ing the subsequence with a new subsequence. Deleting the place has the effect of remov-
ing the specified subsequence from sequence. If sequence is a list, then the
sequence form must itself be a place. The new-value argument in a range assign-
ment can be a string, vector or list, regardless of whether the target is a string, vector or
list. If the target is a string, the replacement sequence must be a string, or a list or vector
of characters.

[sequence index-1ist]
Elements specified by index—-11ist, which may be a list or vector, are extracted from
sequence and returned as a sequence of the same kind as sequence.

This form is equivalent to (select sequence where-index) except when the
target of an assignment operation.

This form is a syntactic place if sequence is one. If a sequence is assigned to this place,
then elements of the sequence are distributed to the specified locations.

The following equivalences hold between index-list-based indexing and the select and
replace functions, except that set always returns the value assigned, whereas
replace returns its first argument:

[seqg idx-1list] <--> (select seqg idx-list)
(set [seqg idx-1list] new) <--> (replace seq new idx-list)

Note that unlike the select function, this does not support [hash index-list]
because since hash keys may be lists, that syntax is indistinguishable from a simple hash
lookup where index-11ist is the key.

[hash key [alt]]
Retrieve a value from the hash table corresponding to key, or else return alt if there is
no such entry. The expression alt is always evaluated, whether or not its value is used.

[search-tree key]
Retrieves an element from the search tree as if by applying the t ree-1ookup function
to key.

[search-tree from-key..to—-below—-key]
Retrieves a list of elements from the search tree as if by evaluating the (sub-tree
search-tree from-key to-below-key) expression.

[regex [start [from—-end]] stringl
Determine whether regular expression regex matches string, and in that case return
the (possibly empty) leftmost matching substring. Otherwise, return nil.

If start is specified, it gives the starting position where the search begins, and if

Utility Commands 2021-07-12 142

TXR(1)

TXR Programming Language TXR(1)

from—end is given, and has a value other than nil, it specifies a search from right to
left. These optional arguments have the same conventions and semantics as their equiva-
lents in the search-regst function.

Note that st ringis always required, and is always the rightmost argument.

[struct arg*]
The structure instance struct is inquired whether it supports a method named by the
symbol lambda. If so, that method is invoked on the object. The method receives
struct followed by the value of every arg. If this form is used as a place, then the
object must support a 1lambda-set method.

[carray index]

[carray from-index..to-below—index]
Element and range indexing is possible on object of type carray which manipulate
arrays in a foreign ("C language") representation, and are closely associated with the For-
eign Function Interface (FFI). Just like in the case of sequences, the semantics of refer-
encing carray objects with the bracket notation is based on the functions ref, ref-
set, sub and replace. These, in turn, rely on the specialized functions. carray-
ref, carray-refset, carray—-sub and carray-replace.

[buf index]
Indexing is supported for objects of type buf. This provides a way to access and store
the individual bytes of a buffer.

Range Indexing:

Notes:

Vector and list range indexing is based from zero, meaning that the first element is numbered zero,
the second one and so on. zero. Negative values are allowed; the value —1 refers to the last ele-
ment of the vector or list, and -2 to the second last and so forth. Thus the range 1 .. -2 means
"everything except for the first element and the last two".

The symbol t represents the position one past the end of the vector, string or list, so 0 .. t
denotes the entire list or vector, and the range t .. t represents the empty range just beyond the
last element. Itis possible to assigntot .. t. Forinstance:

(defvar list (1 2 3))
(set [list t .. t] " (4)) ;; list is now (1 2 3 4)

The value zero has a "floating" behavior when used as the end of a range. If the start of the range
is a negative value, and the end of the range is zero, the zero is interpreted as being the position
past the end of the sequence, rather than the first element. For instance the range —1. .0 means
the same thing as —1..t. Zero at the start of a range always means the first element, so that
0. .-1 refers to all the elements except for the last one.

The dwim operator allows for a Lisp-1 flavor of programming in TXR Lisp, which is principally a
Lisp-2 dialect.

A Lisp-1 dialect is one in which an expression like (a b) treats both a and b as expressions sub-
ject to the same evaluation rules—at least, when a isn’t an operator or an operator macro. This
means that the symbols a and b are resolved to values in the same namespace. The form denotes a
function call if the value of variable a is a function object. Thus in a Lisp-1, named functions do
not exist as such: they are just variable bindings. In a Lisp-1, the form (car 1) means that there
is a variable called car, which holds a function, which is retrieved from that variable and the

Utility Commands 2021-07-12 143

TXR(1) TXR Programming Language TXR(1)

argument 1 is applied to it. In the expression (car car), both occurrences of car refer to the
variable, and so this form applies the car function to itself. It is almost certainly meaningless. In
a Lisp-2 (car 1) means that there is a function called car, in the function namespace. In the
expression (car car) the two occurrences refer to different bindings: one is a function and the
other a variable. Thus there can exist a variable car which holds a cons-cell object, rather than
the car function, and the form makes sense.

The Lisp-1 approach is useful for functional programming, because it eliminates cluttering occur-
rences of the call and fun operators. For instance:

;7 regular notation

(call foo (fun second) ' ((1 a) (2 b)))
;5 [1 notation

[foo second ' ((1 a) (2 b))]

Lisp-1 dialects can also provide useful extensions by giving a meaning to objects other than func-
tions in the first position of a form, and the dwim/ [...] syntax does exactly this.

TXR Lisp is a Lisp-2 because Lisp-2 also has advantages. Lisp-2 programs which use macros nat-
urally achieve hygiene because lexical variables do not interfere with the function namespace. If a
Lisp-2 program has a local variable called 1ist, this does not interfere with the hidden use of the
function 1ist in a macro expansion in the same block of code. Lisp-1 dialects have to provide
hygienic macro systems to attack this problem. Furthermore, even when not using macros, Lisp-1
programmers have to avoid using the names of functions as lexical variable names, if the enclosing
code might use them.

The two namespaces of a Lisp-2 also naturally accommodate symbol macros and operator macros.
Whereas functions and variables can be represented in a single namespace readily, because func-
tions are data objects, this is not so with symbol macros and operator macros, the latter of which
are distinguished syntactically by their position in a form. In a Lisp-1 dialect, given (foo bar),
either of the two symbols could be a symbol macro, but only foo can possibly be an operator
macro. Yet, having only a single namespace, a Lisp-1 doesn’t permit (foo foo), where foo is
simultaneously a symbol macro and an operator macro, though the situation is unambiguous by
syntax even in Lisp-1. In other words, Lisp-1 dialects do not entirely remove the special syntactic
recognition given to the leftmost position of a compound form, yet at the same time they prohibit
the user from taking full advantage of it by providing only one namespace.

TXR Lisp provides the "best of both worlds": the DWIM brackets notation provides a model of
Lisp-1 computation that is purer than Lisp-1 dialects (since the leftmost argument is not given any
special syntactic treatment at all) while the Lisp-2 foundation provides a traditional Lisp environ-
ment with its "natural hygiene".

9.4.8 Function functionp
Syntax:

(functionp obj)
Description:

The functionp function returns t if obj is a function, otherwise it returns nil.

Utility Commands 2021-07-12 144

TXR(1)

TXR Programming Language TXR(1)

9.4.9 Function copy-fun

Syntax:

(copy—-fun function)

Description:

The copy-fun function produces and returns a duplicate of function, which must be a func-
tion.

A duplicate of a function is a distinct function object not eq to the original function, yet which
accepts the same arguments and behaves exactly the same way as the original.

If a function contains no captured environment, then a copy made of that function by copy-fun
is indistinguishable from the original function in every regard, except for being a distinct object
that compares unequal to the original under the eq function.

If a function contains a captured environment, then a copy of that function made by copy-fun
has its own copy of that environment. If the copied function changes the values of captured lexical
variables, the original function is not affected by these changes and vice versa.

The entire lexical environment is copied; the copy and original function do not share any portion
of the environment at any level of nesting.

9.5 Sequencing, Selection and Iteration

9.5.1 Operators/functions progn and progl

Syntax:

(progn form*)
(progl form*)

Description:

The progn operator evaluates each form in in left-to-right order, and returns the value of the last
form. The value of the form (progn) isnil.

The progl operator evaluates each form in left-to-right order, and returns the value of the first
form. The value of the form (progl) isnil.

Various other operators such as let also arrange for the evaluation of a body of forms, the value
of the last of which is returned. These operators are said to feature an implicit progn.

These special operators are also functions. The progn function accepts zero or more arguments.
It returns its last argument, or nil if called with no arguments. The progl function likewise
accepts zero or more arguments. It returns its first argument, or nil if called with no arguments.

Dialect Notes:

In ANSI Common Lisp, progl requires at least one argument. Neither prog nor progl exist as
functions.

9.5.2 Macro/function prog?2

Syntax:

(prog2 form*)

Utility Commands 2021-07-12 145

TXR(1) TXR Programming Language TXR(1)

Description:
The prog2 evaluates each form in left-to-right order. The value is that of the second form, if

present, otherwise itis nil.

The form (prog2 1 2 3) yields 2. The value of (prog2 1 2) isalso2; (prog2 1) and
(prog2) yield nil.

The prog2 symbol also has a function binding. The prog2 function accepts any number of argu-
ments. If invoked with at least two arguments, it returns the second one. Otherwise it returns nil.

Dialect Notes:

In ANSI Common Lisp, prog2 requires at least two arguments. It does not exist as a function.

9.5.3 Operator cond
Syntax:
(cond { (test form*)}*)
Description:
The cond operator provides a multi-branching conditional evaluation of forms. Enclosed in the

cond form are groups of forms expressed as lists. Each group must be a list of at least one form.

The forms are processed from left to right as follows: the first form, test, in each group is evalu-
ated. If it evaluates true, then the remaining forms in that group, if any, are also evaluated. Process-
ing then terminates and the result of the last form in the group is taken as the result of cond. If
test is the only form in the group, then result of test is taken as the result of cond.

If the first form of a group yields nil, then processing continues with the next group, if any. If all

form groups yield nil, then the cond form yields nil. This holds in the case that the syntax is
empty: (cond) yields nil.

9.5.4 Macros caseq, caseql and casequal

Syntax:
(caseq test—-form normal-clause* [else-clausel])
(caseqgl test—-form normal-clause* [else—-clause])
(casequal test—-form normal-clause* [else-clausel])
Description:

These three macros arrange for the evaluation of test-form, whose value is then compared
against the key or keys in each normal-clause in turn. When the value matches a key, then
the remaining forms of normal-clause are evaluated, and the value of the last form is
returned; subsequent clauses are not evaluated. When the value doesn’t match any of the keys of a
normal-clause then the next normal-clause is tested. If all these clauses are exhausted,
and there is no else—-clause, then the value nil is returned. Otherwise, the forms in the el se—
clause are evaluated, and the value of the last one is returned. If there are no forms, then nil is
returned.

The syntax of a normal-clause takes on these two forms:

(key form¥*)

Utility Commands 2021-07-12 146

TXR(1)

Example

TXR Programming Language TXR(1)

where key may be an atom which denotes a single key, or else a list of keys. There is a restriction
that the symbol t may not be used as key. The form (t) may be used as a key to match that
symbol.

The syntax of an else-clauseis:
(t form*)
which resembles a form that is often used as the final clause in the cond syntax.

The three forms of the case construct differ from what type of test they apply between the value of
test—-form and the keys. The caseqg macro generates code which uses the eq function’s
equality. The caseql macro uses eql, and casequal uses equal.

(let ((command-symbol (casequal command-string
(("q" "quit") lquit)
(("a" "add") ladd)
(("d" "del" "delete") ’delete)
(t "unknown))))

9.5.5 Macros caseg*, caseql* and casequal*

Syntax:
(caseg* test—-form normal-clause* [else—-clause])
(casegl* test—-form normal-clause* [else-clause])
(casequal* test—-form normal-clause* [else—clause])
Description:

Example

The caseg*, caseql*, and casequal* macros are similar to the macros caseq, caseql,
and casequal, differing from them in only the following regard. The normal-clause, of
these macros has the form (evaluated-key form*) where evaluated-key is either an
atom, which is evaluated to produce a key, or else else a compound form, whose elements are eval-
uated as forms, producing multiple keys. This evaluation takes place at macro-expansion time, in
the global environment.

The else-clause works the same way under these macros as under caseq et al.

Note that although in a normal-clause, evaluated—-key must not be the atom t, there is
no restriction against it being an atom which evaluates to t . In this situation, the value t has no
special meaning.

The evaluated-key expressions are evaluated in the order in which they appear in the con-
struct, at the time the caseqg*, caseqgl* or casequal* macro is expanded.

Note: these macros allow the use of variables and global symbol macros as case keys.

(defvarl red 0)
(defvarl green 1)
(defvarl blue 2)

Utility Commands 2021-07-12 147

TXR(1)

TXR Programming Language TXR(1)

(let ((color blue))
(casegl* color
(red "hot")
((green blue) "cool")))
-=> "cool"

9.5.6 Operator/function i f

Syntax:

(if cond t-form [e-form])
"["if cond then [elsel’]’

Description:

There exist both an if operator and an if function. A list form with the symbol if in the fist
position is interpreted as an invocation of the i f operator. The function can be accessed using the
DWIM bracket notation and in other ways.

The if operator provides a simple two-way-selective evaluation control. The cond form is eval-
uated. If it yields true then t—form is evaluated, and that form’s return value becomes the return
value of the 1 f. If cond yields false, then e—formis evaluated and its return value is taken to be
that of 1 £. If e~formis omitted, then the behavior is as if e—form were specified as nil.

The if function provides no evaluation control. All of arguments are evaluated from left to right.
If the cond argument is true, then it returns the t hen argument, otherwise it returns the value of
the else argument if present, otherwise it returns nil.

9.5.7 Operator/function and

Syntax:

(and form*)
"["and arg*’]1’

Description:

There exist both an and operator and an and function. A list form with the symbol and in the fist
position is interpreted as an invocation of the operator. The function can be accessed using the
DWIM bracket notation and in other ways.

The and operator provides three functionalities in one. It computes the logical "and" function
over several forms. It controls evaluation (a.k.a. "short-circuiting"). It also provides an idiom for
the convenient substitution of a value in place of ni1 when some other values are all true.

The and operator evaluates as follows. First, a return value is established and initialized to the
value t. The forms, if any, are evaluated from left to right. The return value is overwritten with
the result of each form. Evaluation stops when all forms are exhausted, or when nil is stored in
the return value. When evaluation stops, the operator yields the return value.

The and function provides no evaluation control; it receives all of its arguments fully evaluated. If
it is given no arguments, it returns t. If it is given one or more arguments, and any of them are
nil,itreturns nil. Otherwise it returns the value of the last argument.

Examples:

(and) —> t
(and (> 10 5) (stringp "foo")) -> t

Utility Commands 2021-07-12 148

TXR(1) TXR Programming Language TXR(1)

(and 1 2 3) -=> 3 ;; shorthand for (if (and 1 2) 3).

9.5.8 Operator/function or
Syntax:

(or form*)
"["or arg*’]’
Description:
There exist both an or operator and an or function. A list form with the symbol or in the fist

position is interpreted as an invocation of the operator. The function can be accessed using the
DWIM bracket notation and in other ways.

The or operator provides three functionalities in one. It computes the logical "or" function over
several forms. It controls evaluation (a.k.a. "short-circuiting"). The behavior of or also provides
an idiom for the selection of the first non-nil value from a sequence of forms.

The or operator evaluates as follows. First, a return value is established and initialized to the
value nil. The forms, if any, are evaluated from left to right. The return value is overwritten
with the result of each form. Evaluation stops when all forms are exhausted, or when a true value
is stored into the return value. When evaluation stops, the operator yields the return value.

The or function provides no evaluation control; it receives all of its arguments fully evaluated. If
it is given no arguments, it returns nil. If all of its arguments are nil, it also returns nil. Oth-
erwise, it returns the value of the first argument which isn’t nil.

Examples:

or) —-> nil

or 1 2) —> 1

or nil 2) -> 2

or (> 10 20) (stringp "foo")) -> t

(
(
(
(
9.5.9 Macros when and unless

Syntax:

(when expression form*)
(unless expression form*)

Description:

The when macro operator evaluates expression. If expression yields true, and there are
additional forms, then each form is evaluated. The value of the last form becomes the result
value of the when form. If there are no forms, then the result is nil.

The unless operator is similar to when, except that it reverses the logic of the test. The forms, if
any, are evaluated if and only if expressionis false.

9.5.10 Macros while and until
Syntax:

(while expression form*)
(until expression form*)

Utility Commands 2021-07-12 149

TXR(1) TXR Programming Language TXR(1)

Description:

The while macro operator provides a looping construct. It evaluates expression. If
expressionyields nil, then the evaluation of the while form terminates, producing the value
nil. Otherwise, if there are additional forms, then each form is evaluated. Next, evaluation
returns to expression, repeating all of the previous steps.

The until macro operator is similar to while, except that the until form terminates when
expression evaluates true, rather than false.

These operators arrange for the evaluation of all their enclosed forms in an anonymous block. Any
of the forms, or expression, may use the return operator to terminate the loop, and option-
ally to specify a result value for the form.

The only way these forms can yield a value other than nil is if the return operator is used to

terminate the implicit anonymous block, and is given an argument, which becomes the result
value.

9.5.11 Macros while* and until>*

Syntax:
(while* expression form*)
(until* expression form*)
Description:
The while* and until* macros are similar, respectively, to the macros while and until.
They differ in one respect: they begin by evaluating the forms one time unconditionally, without
first evaluating expression. After this evaluation, the subsequent behavior is like that of
while oruntil.
Another way to regard the behavior is that that these forms execute one iteration unconditionally,
without evaluating the termination test prior to the first iteration. Yet another view is that these
constructs relocate the test from the top of the loop to the bottom of the loop.
9.5.12 Macro whilet
Syntax:
(whilet ({sym | (sym init—-form) }+)
body—-form*)
Description:

The whilet macro provides a construct which combines iteration with variable binding.

The evaluation of the form takes place as follows. First, fresh bindings are established for syms as
if by the 1et * operator. It is an error for the list of variable bindings to be empty.

After the establishment of the bindings, the value of the last sym is tested. If the value is nil,
then whilet terminates. Otherwise, body—forms are evaluated in the scope of the variable
bindings, and then whilet iterates from the beginning, again establishing fresh bindings for the
syms, and testing the value of the last sym.

All evaluation takes place in an anonymous block, which can be terminated with the return
operator. Doing so terminates the loop. If the whilet loop is thus terminated by an explicit

Utility Commands 2021-07-12 150

TXR(1)

TXR Programming Language TXR(1)

return, a return value can be specified. Under normal termination, the return value is nil.

In the syntax, a small convenience is permitted. Instead of the last (sym init-form) itis per-
missible for the syntax (init-form) to appear, the sym being omitted. A machine-generated
variable is substituted in place of the missing sym and that variable is then initialized from init—
form and used as the basis of the test.

Examples:

;7 read lines of text from *stdin* and print them,
;; until the end-of-stream condition:

(whilet ((line (get-1line)))
(put-line line))

;7 read lines of text from *stdin* and print them,
;; until the end-of-stream condition occurs or
;; @ line is identical to the character string "end".

(whilet ((line (get-line))
(more (and line (nequal line "end"))))
(put-line line))

9.5.13 Macros i flet and whenlet

Syntax:
(iflet { ({sym | (sym init-form) }+) | atom—-form}
then-form [else—form])
(whenlet { ({sym | (sym init-form) }+) | atom—-form}
body—-form*)
Description:

The iflet and whenlet macros combine the variable binding of 1et* with conditional evalu-
ation of if and when, respectively.

In either construct’s syntax, a non-compound form atom-form may appear in place of the vari-
able binding list. In this case, at om—form is evaluated as a form, and the construct is equivalent
to its respective ordinary if or when counterpart.

If the list of variable bindings is empty, it is interpreted as the atom nil and treated as an at om—
form.

If one or more bindings are specified rather than at om—form, then the evaluation of these forms
takes place as follows. First, fresh bindings are established for syms as if by the 1et * operator.

Then, the last variable’s value is tested. If it is not ni1 then the test is true, otherwise false.

In the syntax, a small convenience is permitted. Instead of the last (sym init-form) itis per-
missible for the syntax (init-form) to appear, the sym being omitted. A machine-generated
variable is substituted in place of the missing sym and that variable is then initialized from init—
form and used as the basis of the test. This is intended to be useful in situations in which then-
formor else-formdo not require access to the tested value.

In the case of the iflet operator, if the test is true, the operator evaluates then-form and

Utility Commands 2021-07-12 151

TXR(1) TXR Programming Language TXR(1)

yields its value. Otherwise the test is false, and if the optional else—-formis present, that is eval-
uated instead and its value is returned. If this form is missing, then ni1 is returned.

In the case of the whenlet operator, if the test is true, then the body—-forms, if any, are evalu-
ated. The value of the last one is returned, otherwise nil if the forms are missing. If the test is
false, then evaluation of body—forms is skipped, and nil is returned.

Examples:

;; dispose of foo-resource if present
(whenlet ((foo-res (get-foo-resource obj)))
(foo—-shutdown foo-res)
(set—-foo-resource obj nil))

;; Contrast with: above, using when and let
(let ((foo-res (get-foo-resource obj)))
(when foo-res
(foo—-shutdown foo-res)
(set—-foo-resource obj nil)))

;7 print frobosity value if it exceeds 150
(whenlet ((fv (get-frobosity-value))
(exceeds—-p (> fv 150)))
(format t "frobosity value ~“a exceeds 150\n" fv))

;; same as above, taking advantage of the
;7 last variable being optional:
(whenlet ((fv (get-frobosity-value))
((> fv 150)))
(format t "frobosity value ~“a exceeds 150\n" fv))

;7 yield 4: 3 interpreted as atom-form
(whenlet 3 4)

;7 yield 4: nil interpreted as atom-form
(iflet () 3 4)

9.5.14 Macro condlet

Syntax:
(condlet
([({ sym | (sym init-form) }+) | atom-form]
body—-form*) *)
Description:

The condlet macro generalizes iflet.

Each argument is a compound consisting of at least one item: a list of bindings or atom—form.
This item is followed by zero or more body—forms.

If there are no body—rforms then the situation is treated as if there were a single body—-form
specified as nil.

The arguments of condlet are considered in sequence, starting with the leftmost.

Utility Commands 2021-07-12 152

TXR(1)

TXR Programming Language TXR(1)

If the argument’s left item is an at om—form then the form is evaluated. If it yields true, then the
body-forms next to it are evaluated in order, and the condlet form terminates, yielding the
value obtained from the last body—form. If atom-form yields false, then the next argument is
considered, if there is one.

If the argument’s left item is a list of bindings, then it is processed with exactly the same logic as
under the 1 flet macro. If the last binding contains a true value, then the adjoining body—forms
are evaluated in a scope in which all of the bindings are visible, and condlet terminates, yield-
ing the value of the last body—form. Otherwise, the next argument of condlet is considered
(processed in a scope in which the bindings produced by the current item are no longer visible).

If condlet runs out of arguments, it terminates and returns nil.

Example:

(let ((1 " (1 2 3)))
(condlet
first arg
(a (first 1) ;7 @ binding gets 1
(b (second 1)) ;; b binding gets 2
(g (> a b)))) ;7 last variable g is nil
foo) ;; not evaluated
second arg
(b (second 1) ;7 b gets 2
(c (third 1)) ;7 C gets 3
(g (> b c)))) ;7 last variable g is true
"bar))) ;; condlet terminates
-—> bar ;; result is bar

((

((

9.5.15 Macro i fa

Syntax:

(ifa cond then [else])

Description:

The ifa macro provides a anaphoric conditional operator resembling the i f operator. Around the
evaluation of the then and else forms, the symbol it is implicitly bound to a subexpression of
cond, a subexpression which is thereby identified as the it-form. This it alias provides a conve-
nient reference to that place or value, similar to the word "it" in the English language, and similar
anaphoric pronouns in other languages.

If it is bound to a place form, the binding is established as if using the placelet operator: the
form is evaluated only once, even if the it alias is used multiple times in the then or else
expressions. Otherwise, if the form is not a syntactic place it is bound as an ordinary lexical
variable to the form’s value.

An it-candidate is an an expression viable for having its value or storage location bound to the it
symbol. An it-candidate is any expression which is not a constant expression according to the
constantp function, and not a symbol.

The i fa macro imposes applies several rules to the cond expression:

1. The cond expression must be either an atom, a function call form, or a dwim form. Oth-
erwise the ifa expression is ill-formed, and throws an exception at macro-expansion
time. For the purposes of these rules, a dwim form is considered as a function call

Utility Commands 2021-07-12 153

TXR(1)

TXR Programming Language TXR(1)

expression, whose first argument is the second element of the form. That is to say, [£
x] which is equivalent to (dwim £ x) is treated similarly to (£ x) as a one-argument
call.

If the cond expression is a function call with two or more arguments, at most one of
them may be an it-candidate. If two or more arguments are it-candidates, the situation is
ambiguous. The ifa expression is ill-formed and throws an exception at macro-expan-
sion time.

If cond is an atom, or a function call expression with no arguments, then the it symbol
is not bound. Effectively, 1 fa macro behaves like the ordinary i f operator.

If cond is a function call or dwim expression with exactly one argument, then the it
variable is bound to the argument expression, except when the function being called is
not, null, or false. This binding occurs regardless of whether the expression is an
it-candidate.

If cond is a function call with exactly one argument to the Boolean negation function
which goes by one of the three names not, null, or false, then that situation is han-
dled by a rewrite according to the following pattern:

(ifa (not expr) then else) —-> (ifa expr else then)

which applies likewise for null or false substituted for not. The Boolean inverse
function is removed, and the t hen and else expressions are exchanged.

If cond is a function call with two or more arguments, then it is only well-formed if at
most one of those arguments is an it-candidate. If there is one such argument, then the
it variable is bound to it.

Otherwise the variable is bound to the leftmost argument expression, regardless of
whether that argument expression is an it-candidate.

In all other regards, the 1 fa macro behaves similarly to 1 f.

The cond expression is evaluated, and, if applicable, the value of, or storage location denoted by
the appropriate argument is captured and bound to the variable it whose scope extends over the
then form, as well as over else, if present.

If cond yields a true value, then then is evaluated and the resulting value is returned, otherwise
else is evaluated if present and its value is returned. A missing else is treated as if it were the
nil form.

Examples:

Utility Commands

(ifa

t10) -—> 1

;; Rule 6: it binds to (* x x), which is

H
(let
(i

—-> (

he only it-candidate.
((x 6) (y 49))
fa (> y (* x x)) ;; it binds to (* x x)
(list it)))
36)

;7 Rule 4: it binds to argument of evenp,

i ©
(ifa

ven though 4 isn’t an it-candidate.
(evenp 4)

2021-07-12 154

TXR(1)

TXR Programming Language TXR(1)

(list it))

-> (4)

;7 Rule 5:

(ifa (not (oddp 4))
(list it))

-> (4)

;; Rule 7: no candidates: choose leftmost
(let ((x 6) (y 49))
(ifa (<1 x vy)
(list it)))
-> (1)

-> (4)

;; Violation of Rule 1:

;; while is not a function

(ifa (while t (print 42))
(list it))

—-—> exception!

;; Violation of Rule 2:
(let ((x 6) (y 49))
(ifa (> (* vy yy) (* x x)))
(list it))
—-—> exception!

9.5.16 Macro conda

Syntax:

(conda { (test form*)}*)

Description:

The conda operator provides a multi-branching conditional evaluation of forms, similarly to the
cond operator. Enclosed in the cond form are groups of forms expressed as lists. Each group
must be a list of at least one form.

The conda operator is anaphoric: it expands into a nested structure of zero or more ifa invoca-
tions, according to these patterns:

(conda) —-> nil
(conda (X' ¥y ...) ...) —> (ifa x (progn y ...) (conda ...))

Thus, conda inherits all the restrictions on the test expressions from ifa, as well as the
anaphoric it variable feature.

9.5.17 Macro whena

Syntax:

(whena test form*)

Description:

The whena macro is similar to the when macro, except that it is anaphoric in exactly the same
manner as the i fa macro. It may be understood as conforming to the following equivalence:

Utility Commands 2021-07-12 155

TXR(1)

TXR Programming Language TXR(1)

(whena x £f0 f2 ...) <—=> (if x (progn fO0 f2 ...))

9.5.18 Macro dotimes

Syntax:

(dotimes (var count-form [result—-form])
body—-form*)

Description:

The dotimes macro implements a simple counting loop. var is established as a variable, and
initialized to zero. count—-formis evaluated one time to produce a limiting value, which should
be a number. Then, if the value of var is less than the limiting value, the body—forms are eval-
uated, var is incremented by one, and the process repeats with a new comparison of var against
the limiting value possibly leading to another evaluation of the forms.

If var is found to equal or exceed the limiting value, then the loop terminates.

When the loop terminates, its return value is nil unless a result—form is present, in which
case the value of that form specifies the return value.

body-forms as well as result-form are evaluated in the scope in which the binding of var
is visible.

9.5.19 Operators each, each*, collect—-each, collect-each*, append-each and append-

each*

Syntax:
(each ({(sym init-form)}*) body—-form*)
(each* ({(sym init-form)}*) body—-form*)
(collect-each ({(sym init-form)}*) body-form*)
(collect-each* ({(sym init-form)}*) body-form*)
(append-each ({(sym init-form)}*) body-form*)
(append-each* ({(sym init-form)}*) body-form*)

Description:

These operators establish a loop for iterating over the elements of one or more sequences. Each
init-form must evaluate to an iterable object that is suitable as an argument for the iter-
begin function. The sequences are then iterated in parallel over repeated evaluations of the
body-forms, with each sym variable being assigned to successive elements of its sequence. The
shortest list determines the number of iterations, so if any of the init-forms evaluate to an
empty sequence, the body is not executed.

If the list of (sym init-form) pairs itself is empty, then an infinite loop is specified.

The body forms are enclosed in an anonymous block, allowing the return operator to terminate
the loop prematurely and optionally specify the return value.

The collect-each and collect-each* variants are like each and each*, except that for
each iteration, the resulting value of the body is collected into a list. When the iteration terminates,
the return value of the collect—each or collect—-each* operator is this collection.

The append-each and append-each* variants are like each and each*, except that for
each iteration other than the last, the resulting value of the body must be a list. The last iteration
may produce either an atom or a list. The objects produced by the iterations are combined

Utility Commands 2021-07-12 156

TXR(1)

Note:

TXR Programming Language TXR(1)

together as if they were arguments to the append function, and the resulting value is the value of
the append-each or append-each* operator.

The alternate forms denoted by the adorned symbols each*, collect-each* and append-
each*, differ from each, collect-each and append-each in the following way. The plain
forms evaluate the init-forms in an environment in which none of the sym variables are yet
visible. By contrast, the alternate forms evaluate each init—-form in an environment in which
bindings for the previous sym variables are visible. In this phase of evaluation, sym variables are
list-valued: one by one they are each bound to the list object emanating from their corresponding
init-form. Just before the first loop iteration, however, the sym variables are assigned the first
item from each of their lists.

The semantics of collect—-each may be understood in terms of an equivalence to a code pat-
tern involving mapcar:

(collect-each ((x xinit) (mapcar (lambda (x V)
(y yinit)) <-—> body)
body) xinit yinit)

The collect—-each* variant may be understood in terms of the following equivalence involv-
ing let* for sequential binding and mapcar:

(collect—each* ((x xinit) (let* ((x xinit)
(y yinit)) <—=> (y yinit))
body) (mapcar (lambda (x y)
body)
X y))

However, note that the 1et* as well as each invocation of the 1ambda binds fresh instances of
the variables, whereas these operators are permitted to bind a single instance of the variables,
which are first initialized with the initializing expressions, and then reused as iteration variables
which are stepped by assignment.

The other operators may be understood likewise, with the substitution of the mapdo function in
the case of each and each* and of the mappend function in the case of append-each and
append—-each*.

Example:

Output:

;7 print numbers from 1 to 10 and whether they are even or odd

(each* ((n 1..11) ;; n is Jjust a range object in this scope
(even (collect-each ((m n)) (evenp m))))
;5 n 1s an integer in this scope
(format t ""s is “s\n" n (if even "even" "odd")))
1 is "odd"
2 is "even"
3 is "odd"
4 is "even"
5 is "odd"
6 is "even"
7 is "odd"

Utility Commands 2021-07-12 157

TXR(1) TXR Programming Language TXR(1)

8 is "even"
9 is "odd"
10 is "even"

9.5.20 Operators for and for*

Syntax:
({for | for*} ({sym | (sym init-form) }*)
([test—form result-form*])
(inc—form*)
body—-form*)
Description:

The for and for* operators combine variable binding with loop iteration. The first argument is
a list of variables with optional initializers, exactly the same as in the 1et and let* operators.
Furthermore, the difference between for and for* is like that between let and let* with
regard to this list of variables.

The for and for* operators execute these steps:

1. Establish an anonymous block over the entire form, allowing the return operator to be
used to terminate the loop.

2. Establish bindings for the specified variables similarly to 1et and let*. The variable
bindings are visible over the test—-form, each result-form, each inc-form and
each body—-form.

3. Evaluate test-form. If test-form yields nil, then the loop terminates. Each
result—-rformis evaluated, and the value of the last of these forms is is the result value
of the loop. If there are no result—forms then the result value is nil. If the test—
formis omitted, then the test is taken to be true, and the loop does not terminate.

4. Otherwise, if test-formyields true, then each body—-formis evaluated in turn. Then,
each inc-formis evaluated in turn and processing resumes at step 2.

Furthermore, the for and for* operators establish an anonymous block, allowing the return
operator to be used to terminate at any point.

9.5.21 Macros doloop and doloop*

Syntax:
({doloop | doloop*}
({ sym | (sym [init-form [step—-form])}*)
([test—form result-form*])
tagbody—form*)
Description:

The doloop and doloop* macros provide an iteration construct inspired by the ANSI Common
Lisp do and do* macros.

Each sym element in the form must be a symbol suitable for use as a variable name.
The tagbody-forms are placed into an implicit tagbody, meaning that a tagbody—-form

which is an integer, character or symbol is interpreted as a tagbody label which may be the tar-
get of a control transfer via the go macro.

Utility Commands 2021-07-12 158

TXR(1)

TXR Programming Language TXR(1)

The doloop macro binds each sym to the value produced by evaluating the adjacent init—
form. Then, in the environment in which these variables now exist, test—-formis evaluated. If
that form yields nil, then the loop terminates. The result—-forms are evaluated, and the value
of the last one is returned.

If result—-forms are absent, then nil is returned.
If test—-formis also absent, then the loop terminates and returns nil.

If test-form produces a true value, then result-forms are not evaluated. Instead, the
implicit tagbody comprised of the tagbody-forms is evaluated. If that evaluation terminates
normally, the loop variables are then updated by assigning to each sym the value of step—form.

The following defaulting behaviors apply in regard to the variable syntax. For each sym which has
an associated init-formbut no step—form, the init-formis duplicated and taken as the
step—-form. Thus a variable specification like (x y) is equivalentto (x y y). If both forms
are omitted, then the init-formis taken to be nil, and the step—form is taken to be sym.
This means that the variable form (x) is equivalent to (x nil x) which has the effect that x
retains its current value when the next loop iteration begins. Lastly, the sym variant is equivalent
to (sym) so that x is also equivalentto (x nil x).

The differences between doloop and doloop* are: doloop binds the variables in parallel,
similarly to 1let, whereas doloop* binds sequentially, like 1et *; moreover, doloop performs
the step-form assignments in parallel as if using a single (pset sym0 step-form-0
syml step-form-1 ...) form, whereas doloop* performs the assignment sequentially
as if using set rather than pset.

The doloop and doloop* macros establish an anonymous block, allowing early return from
the loop, with a value, via the return operator.

Dialect Note:

These macros are substantially different from the ANSI Common Lisp do and do* macros.
Firstly, the termination logic is inverted; effectively they implement "while" loops, whereas their
ANSI CL counterparts implement "until" loops. Secondly, in the ANSI CL macros, the defaulting
of the missing step-form is different. Variables with no step-form are not updated. In par-
ticular, this means that the form (x y) is not equivalent to (x y y); the ANSI CL macros do
not feature the automatic replication of init-forminto the step—form position.

9.5.22 Macros each-prod, collect—each-prod and append-each-prod

(each-prod ({(sym init-form)}*) body—-form*)
(collect-each-prod ({(sym init—form)}*) body—-form*)
(append-each-prod ({ (sym init-form)}*) body—-form*)

Description:

The macros each-prod, collect-each-prod and append-each-prod have a similar
syntax to each, collect-each and collect-each-prod. However, instead of iterating
over sequences in parallel, they iterate over the Cartesian product of the elements from the
sequences. The difference between collect-each and collect-each-prod is analogous
to that between the functions mapcar and maprod.

These macros can be understood as providing syntactic sugar according to the pattern established

Utility Commands 2021-07-12 159

TXR(1)

by the following equivalences:

TXR Programming Language

TXR(1)

(each-prod (mapdo (lambda (x vy)
((x xinit) body)
(y yinit)) <—=> xinit
body) yinit)
(collect—-each-prod (maprod (lambda (x y)
((x xinit) body)
(y yinit)) <=—=> xinit
body) yinit)
(append-each-prod (maprend (lambda (x y)
((x xinit) body)
(y yinit)) <=—=> xinit
body) yinit)

However, note that each invocation of the 1ambda binds fresh instances of the variables, whereas
these operators are permitted to bind a single instance of the variables, which are then stepped by

assignment.

Example:

(collect—-each-prod

(cons a n))

9.5.23 Macros each—-prod*, collect-each-prod* and append-each-prod*

Syntax:
(each-prod* ({ (sym init—-form)}*) body—-form*)
(collect-each-prod* ({(sym init-form)}*) body-form*)
(append-each-prod* ({ (sym init—form)}*) body—-form*)
Description:

The macros each-prod*, collect-each-prod* and append-each-prod* are variants
of each-prod*, collect-each-prod* and append-each-prod* with sequential bind-
ing.

These macros can be understood as providing syntactic sugar according to the pattern established

by the following equivalences:

(each-prod* (let* ((x xinit)
((x xinit) (y yinit))
(y yinit)) <—=> (mapdo (lambda (x y) body)
body) X y)
(collect—-each—-prod* (let* ((x xinit)
((x xinit) (y yinit))
(y yinit)) <—=> (maprod (lambda (x y) body)
body) X y)
Utility Commands 2021-07-12 160

TXR(1) TXR Programming Language TXR(1)

(append—-each-prod* (let* ((x xinit)
((x xinit) (y yinit))
(y yinit)) <—=> (maprend (lambda (x y) body)
body) X y)

However, note that the 1et* as well as each invocation of the 1ambda binds fresh instances of
the variables, whereas these operators are permitted to bind a single instance of the variables,
which are first initialized with the initializing expressions, and then reused as iteration variables
which are stepped by assignment.

Example:

(collect—each—-prod* ((a "abc")
(b (upcase—-str a)))
‘Qalb?)

—_> (n aA" n aB n n ac n "bA" "bB n "bc n n CA" n CB n n CC n)

9.5.24 Operators block and block*
Syntax:

(block name body—-form*)
(block* name-form body—-form*)

Description:

The block operator introduces a named block around the execution of some forms. The name
argument may be any object, though block names are usually symbols. Two block name objects
are considered to be the same name according to eq equality. Since a block name is not a variable
binding, keyword symbols are permitted, and so are the symbols t and nil. A block named by
the symbol nil is slightly special: it is understood to be an anonymous block.

The block* operator differs from block in that it evaluates name—form, which is expected to
produce a symbol. The resulting symbol is used for the name of the block.

A named or anonymous block establishes an exit point for the return-from or return opera-
tor, respectively. These operators can be invoked within a block to cause its immediate termination
with a specified return value.

A block also establishes a prompt for a delimited continuation. Anywhere in a block, a continua-
tion can be captured using the sys:capture-cont function. Delimited continuations are
described in the section Delimited Continuations. A delimited continuation allows an apparently
abandoned block to be restarted at the capture point, with the entire call chain and dynamic envi-
ronment between the prompt and the capture point intact.

Blocks in TXR Lisp have dynamic scope. This means that the following situation is allowed:

(defun func () (return—-from foo 42))
(block foo (func))

The function can return from the foo block even though the foo block does not lexically sur-
round foo.

It is because blocks are dynamic that the block* variant exists; for lexically scoped blocks, it
would make little sense to have support a dynamically computed name.

Utility Commands 2021-07-12 161

TXR(1)

TXR Programming Language TXR(1)
Thus blocks in TXR Lisp provide dynamic nonlocal returns, as well as returns out of lexical nest-
ing.
It is permitted for blocks to be aggressively progn-converted by compilation. This means that a
block form which meets certain criteria is converted to a progn form which surrounds the

body-forms and thus no longer establishes an exit point.

A block form will be spared from progn-conversion by the compiler if it meets the following

rules.

1. Any body-form references the block’s name in a return, return-from,
sys:abscond-fromor sys:capture—cont expression.

2. The form contains at least one direct call to a function not in the standard TXR Lisp
library.

3. The form contains at least one direct call to the functions sys:capture-cont,
return*, sys:abscond*, match-fun, eval, load, compile, compile-file
or compile-toplevel.

4. The form references any of the functions in rules 2 and 3 as a function binding via the
dwim operator (or the DWIM brackets notation) or via the fun operator.

5. The form is a block* form; these are spared from the optimization.

Removal of blocks under the above rules means that some use of blocks which works in inter-
preted code will not work in compiled programs. Programs which adhere to the rules are not
affected by such a difference.

Additionally, the compiler may progn-convert blocks in contravention of the above rules, but
only if doing so makes no difference to visible program behavior.

Examples:

(defun helper ()
(return-from top 42))

;7 defun implicitly defines a block named top

(defun top ()
(helper) ;; function returns 42
(prinl ’"notreached)) ;; never printed
(defun top2 ()
(let ((h (fun helper)))
(block top (call h)) ;; may progn-convert
(block top (call ’'helper)) ;; may progn-convert
(block top (helper)))) ;; not removed

In the above examples, the block containing (call h) may be converted to progn because it
doesn’t express a direct call to the helper function. The block which calls helper using
(call "helper) is also not considered to be making a direct call.

Dialect Note:

In Common Lisp, blocks are lexical. A separate mechanism consisting of catch and throw opera-
tors performs nonlocal transfer based on symbols. The TXR Lisp example:

(defun func () (return—-from foo 42))
(block foo (func))

Utility Commands 2021-07-12 162

TXR(1) TXR Programming Language TXR(1)

is not allowed in Common Lisp, but can be transliterated to:

(defun func () (throw ’"foo 42))
(catch "foo (func))

Note that foo is quoted in CL. This underscores the dynamic nature of the construct. throw itself
is a function and not an operator. Also note that the CL example, in turn, is even more closely tran-
scribed back into TXR Lisp simply by replacing its throw and catch with return* and
block*:

(defun func () (return* ’"foo 42))
(block* "foo (func))

Common Lisp blocks also do not support delimited continuations.

9.5.25 Operators return and return-from
Syntax:

(return [valuel])
(return-from name [value])

Description:

The return operator must be dynamically enclosed within an anonymous block (a block named
by the symbol nil). It immediately terminates the evaluation of the innermost anonymous block
which encloses it, causing it to return the specified value. If the value is omitted, the anonymous
block returns nil.

The return-from operator must be dynamically enclosed within a named block whose name
matches the name argument. It immediately terminates the evaluation of the innermost such
block, causing it to return the specified value. If the value is omitted, that block returns nil.

Example:
(block foo
(let ((a "abc\n")
(b "def\n"))

(pprint a *stdout*)
(return—-from foo 42)
(pprint b *stdout*)))

Here, the output produced is "abc". The value of b is not printed because. return—-from ter-
minates block foo, and so the second pprint form is not evaluated.

9.5.26 Function return*
Syntax:

(return* name [value])
Description:

The return* function is similar to the the return-from operator, except that name is an
ordinary function parameter, and so when return* is used, an argument expression must be
specified which evaluates to a symbol. Thus return* allows the target block of a return to be
dynamically computed.

Utility Commands 2021-07-12 163

TXR(1) TXR Programming Language TXR(1)

The following equivalence holds between the operator and function:
(return-from a b) <--> (return* "a b)

Expressions used as name arguments to return* which do not simply quote a symbol have no
equivalent in return-from.

9.5.27 Macros tagbody and go
Syntax:

(tagbody {form | label} ™)
(go label)

Description:

The tagbody macro provides a form of the "go to" control construct. The arguments of a tag-
body form are a mixture of zero or more forms and go labels. The latter consist of those argu-
ments which are symbols, integers or characters. Labels are not considered by tagbody and go
to be forms, and are not subject to macro expansion or evaluation.

The go macro is available inside tagbody. It is erroneous for a go form to occur outside of a
tagbody. This situation is diagnosed by global macro called go, which unconditionally throws
an error.

In the absence of invocations of go or other control transfers, the t agbody macro evaluates each
form in left-to-right order. The go labels are ignored. After the last formis evaluated, the tag-
body form terminates, and yields nil.

Any form itself, or else any of its subforms, may be the form (go label) where label
matches one of the go labels of a surrounding tagbody. When this go form is evaluated, then
the evaluation of form is immediately abandoned, and control transfers to the specified label. The
forms are then evaluated in left-to-right order starting with the form immediately after that label. If
the label is not followed by any forms, then the tagbody terminates. If 1abel doesn’t match to
any label in any surrounding tagbody, the go form is erroneous.

The abandonment of a form by invocation of go is a dynamic transfer. All necessary unwinding
inside form takes place.

The go labels are lexically scoped, but dynamically bound. Their scope being lexical means that
the labels are not visible to forms which are not enclosed within the tagbody, even if their evalu-
ation is invoked from that tagbody. The dynamic binding means that the labels of a tagbody
form are established when it begins evaluating, and removed when that form terminates. Once a
label is removed, it is not available to be the target of a go control transfer, even if that go form
has the label in its lexical scope. Such an attempted transfer is erroneous.

It is permitted for tagbody forms to nest arbitrarily. The labels of an inner tagbody are not vis-
ible to an outer tagbody. However, the reverse is true: a go form in an inner tagbody may

branch to a label in an outer tagbody, in which case the entire inner t agbody terminates.

In cases where the same objects are used as labels by an inner and outer tagbody, the inner
labels shadow the outer labels.

There is no restriction on what kinds of symbols may be labels. Symbols in the keyword pack-
age as well as the symbols t and nil are valid tagbody labels.

Utility Commands 2021-07-12 164

TXR(1) TXR Programming Language TXR(1)
g

Dialect Note:

ANSI Common Lisp tagbody supports only symbols and integers as labels (which are called "go
tags"); characters are not supported.

Examples:

;7 print the numbers 1 to 10
(let ((i 0))
(tagbody
(go skip) ;; forward goto skips O
again
(prinl i)
skip
(when (<= (inc i) 10)
(go again))))

;; Example of erroneous usage: by the time func is invoked
;7 by (call func) the tagbody has already terminated. The
;7 lambda body can still "see" the label, but it doesn’t
;7 have a binding.
(let (func)
(tagbody
(set func (lambda () (go label)))
(go out)
label
(prinl ’"never-reached)
out)
(call func))

;7 Example of unwinding when the unwind-protect

;; form is abandoned by (go out). Output is:
HH reached
HH cleanup
HH out
(tagbody
(unwind-protect
(progn
(prinl ’reached)
(go out)

(prinl ’"notreached))
(prinl ’cleanup))
out
(prinl 'out))

9.5.28 Macros prog and prog*

Syntax:
(prog ({sym | (sym init-form)}*)
{body—-form | label} *)
(prog* ({sym | (sym init-form) }*)

{body—-form | label} ™)

Utility Commands 2021-07-12 165

TXR(1)

TXR Programming Language TXR(1)

Description:

The prog and progn* macros combine the features of 1et and let *, respectively, anonymous
block and tagbody.

The prog macro treats the sym and init-form expressions similarly to let, establishing vari-
able bindings in parallel. The prog* macro treats these expressions in a similar way to let *.

The forms enclosed are treated like the argument forms of the tagbody macro: labels are permit-
ted, along with use of go.

Finally, an anonymous block is established around all of the enclosed forms (both the init-
forms and body-formss) allowing the use of return to terminate evaluation with a value.

The prog macro may be understood according to the following equivalence:
(prog vars forms ...) <-—> (block nil
(let wvars

(tagbody forms ...)))

Likewise, the prog* macro follows an analogous equivalence, with 1et replaced by let *.

9.6 Evaluation

9.6.1 Function eval

Syntax:

(eval form [env])

Description:

The eval function treats the form object as a Lisp expression, which is expanded and evaluated.
The side effects implied by the form are performed, and the value which it produces is returned.
The optional env object specifies an environment for resolving the function and variable refer-
ences encountered in the expression. If this argument is omitted nil then evaluation takes place
in the global environment.

The formis not expanded all at once. Rather, it is treated by the following algorithm:

1. First, if form is a macro, it is macro-expanded as if by an application of the function
macroexpand.
2. If the resulting expanded form is a progn, compile-only, or eval-only form,

then eval iterates over that form’s argument expressions, passing each expression to a
recursive call to eval using the same env.

3. Otherwise, if the expanded form isn’t one of the above three kinds of expressions, it is
subject to a full expansion and evaluation.

This algorithm allows a sequence of top-level forms to be combined into a single top-level form,
even when the expansion of forms occurring later in the sequence depends on the evaluation
effects of forms earlier in the sequence.

For instance, a form like (progn (defmacro foo ()) (foo)) may be processed with
eval, because the above algorithm ensures that the (defmacro foo ()) expression is fully
evaluated first, thereby providing the macro definition required by (foo).

This expansion and evaluation order is important because the semantics of eval forms the refer-
ence model for how the 1oad function processes top-level forms.

Utility Commands 2021-07-12 166

TXR(1)

TXR Programming Language TXR(1)

Note that, according to these rules, the constituent body forms of a macrolet or symacrolet
top-level form are not individual top-level forms, even if the expansion of the construct combines
the expanded versions of those forms with progn.

The form (macrolet () (defmacro foo ()) (foo)) will therefore not work cor-
rectly. However, the specific problem in this situation can be be resolved by rewriting foo as a
macrolet macro: (macrolet ((foo ())) (foo)).

See also: the make—env function.

9.6.2 Function constantp

(constantp form [envVv])

Description:

The constantp function determines whether form is a constant form, with respect to environ-
ment env.

If env is absent, the global environment is used. The env argument is used for fully expanding
form prior to analyzing.

Currently, constantp returns true for any form which, after macro-expansion, is any of the fol-
lowing: a compound form with the symbol quote in its first position; a non-symbolic atom; or
one of the symbols which evaluate to themselves and cannot be bound as variables. These sym-
bols are the keyword symbols, and the symbols t and nil.

Additionally, constantp returns true for a compound form, or a DWIM form, whose symbol is
the member of a set a large number of constant-foldable library functions, and whose arguments
are, recursively, constantp expressions for the same environment. The arithmetic functions are
members of this set.

For all other inputs, constantp returns nil.

Note: some uses of constantp require manual expansion.

Examples:

(constantp nil) -> t
(constantp t) -> t
(constantp :key) -> t
(constantp :) -> t
(constantp "a) —-> nil
(constantp 42) -> t

(constantp " (+ 2 2 [* 3 (/ 4 4)])) —> t

;7 symacrolet form expands to 42, which is constant
(constantp ' (symacrolet ((a 42)) a))

(defmacro cp (:env e arg)
(constantp arg e))

;; macro call (cp ’'a) is replaced by t because

Utility Commands 2021-07-12 167

TXR(1) TXR Programming Language TXR(1)

;7 the symbol a expands to (+ 2 2) in the given environment,

;7 and so (* a a) expands to (* (+ 2 2) (+ 2 2)) which is constantp.
(symacrolet ((a (+ 2 2)))
(cp "(* aa))) —>t

9.6.3 Function make—-env
Syntax:
(make-env [var-bindings [fun-bindings [next-env]]])
Description:
The make-env function creates an environment object suitable as the env parameter.
The var-bindings and fun-bindings parameters, if specified, should be association lists,

mapping symbols to objects. The objects in fun-bindings should be functions, or objects
callable as functions.

The next -env argument, if specified, should be an environment.

Note: bindings can also be added to an environment using the env-vbind and env-fbind
functions.

9.6.4 Functions env-vbind and env-fbind
Syntax:

(env-vbind env symbol value)
(env-fbind env symbol value)

Description:

These functions bind a symbol to a value in either the function or variable space of environment
env.

Values established in the function space should be functions or objects that can be used as func-
tions such as lists, strings, arrays or hashes.

If symbol already exists in the environment, in the given space, then its value is updated with
value.

If envis specified as ni1l, then the binding takes place in the global environment.

9.6.5 Functions env-vbindings, env-fbindings and env-next

Syntax:
(env-vbindings env)
(env-fbindings env)
(env—next env)
Description:

These function retrieve the components of env, which must be an environment. The env-
vbindings function retrieves the the association list representing variable bindings. Similarly,
the env-fbindings retrieves the association list of function bindings. The env-next func-
tion retrieves the next environment, if env has one, otherwise nil.

If e is an environment constructed by the expression (make-env v £ n), then (env-

Utility Commands 2021-07-12 168

TXR(1)

TXR Programming Language TXR(1)

vbindings e) retrieves v, (env—-fbindings e) retrieves f and (env—-next e) returns
n.

9.7 Global Environment

9.7.1 Accessors symbol—-function, symbol-macro and symbol-value

Syntax:
(symbol-function {symbol | method—name | lambda—-expr})
(symbol-macro symbol)
(symbol-value symbol)
(set (symbol-function {symbol | method—-name}) new-value)
(set (symbol-macro symbol) new-value)
(set (symbol-value symbol) new-value)

Description:

If given a symbol argument, the symbol-function function retrieves the value of the global
function binding of the given symbol if it has one: that is, the function object bound to the sym—
bol. If symbol has no global function binding, then ni1l is returned.

The symbol-function function supports method names of the form (meth struct
slot) where struct names a struct type, and slot is either a static slot or one of the key-
word symbols :init or :postinit which refer to special functions associated with a structure
type. Names in this format are returned by the func-get-name function. The symbol-
function function also supports names of the form (macro name) which denote macros.
Thus, symbol-function provides unified access to functions, methods and macros.

If a lambda expression is passed to symbol-function, then the expression is macro-
expanded and if that is successful, the function implied by that expression is returned. It is
unspecified whether this function is interpreted or compiled.

The symbol-macro function retrieves the value of the global macro binding of symbol if it
has one.

Note: the name of this function has nothing to do with symbol macros; it is named for consistency
with symbol-function and symbol-value, referring to the "macro-expander binding of
the symbol cell".

The value of a macro binding is a function object. Intrinsic macros are C functions in the TXR
kernel, which receive the entire macro call form and macro environment, performing their own
destructuring. Currently, macros written in TXR Lisp are represented as curried C functions
which carry the following list object in their environment cell:

(#<environment object> macro-parameter-1list body-form*)
Local macros created by macrolet have nil in place of the environment object.
This representation is likely to change or expand to include other forms in future TXR versions.
The symbol-value function retrieves the value stored in the dynamic binding of symbol that
is apparent in the current context. If the variable has no dynamic binding, then symbol-value
retrieves its value in the global environment. If symbol has no variable binding, but is defined as

a global symbol macro, then the value of that symbol macro binding is retrieved. The value of a
symbol macro binding is simply the replacement form.

Utility Commands 2021-07-12 169

TXR(1)

TXR Programming Language TXR(1)

Rather than throwing an exception, each of these functions returns nil if the argument symbol
doesn’t have the binding in the respective namespace or namespaces which that function searches.

A symbol-function, symbol-macro, or symbol-value form denotes a place, if sym—
bol has a binding of the respective kind. This place may be assigned to or deleted. Assignment to
the place causes the denoted binding to have a new value. Deleting a place with the del macro
removes the binding, and returns the previous contents of that binding. A binding denoted by a
symbol-function form is removed using fmakunbound, one denoted by by symbol-
macro is removed using mmakunbound and a binding denoted by symbol-value is removed
using makunbound.

Deleting a method via symbol-function is not possible; an attempt to do so has no effect.

Storing a value, using any one of these three accessors, to a nonexistent variable, function or
macro binding, is not erroneous. It has has the effect of creating that binding.

Using symbol-function accessor to assign to a lambda expression is erroneous.
Deleting a binding, using any of these three accessors, when the binding does not exist, also isn’t

erroneous. There is no effect and the del operator yields nil as the prior value, consistent with
the behavior when accessors are used to retrieve a nonexistent value.

Dialect Note:

In ANSI Common Lisp, the symbol-function function retrieves a function, macro or special
operator binding of a symbol. These are all in one space and may not coexist. In TXR Lisp, it
retrieves a symbol’s function binding only. Common Lisp has an accessor named macro-func-
tion similar to symbol-macro.

9.7.2 Functions boundp, fboundp and mboundp

(boundp symbol)
(fboundp {symbol | method—name | lambda—-expr})
(mboundp symbol)

Description:

boundp returns t if the symbol is bound as a variable or symbol macro in the global environ-
ment, otherwise nil.

fboundp returns t if the symbol has a function binding in the global environment, the method
specified by method-name exists, or a lambda expression argument is given. Otherwise it
returns nil.

mboundp returns t if the symbol has an operator macro binding in the global environment, other-
wise nil.

Dialect Notes:

The boundp function in ANSI Common Lisp doesn’t report that global symbol macros have a
binding. They are not considered bindings. In TXR Lisp, they are considered bindings.

The ANSI Common Lisp fboundp yields true if its argument has a function, macro or operator
binding. The behavior of the Common Lisp expression (fboundp x) in Common Lisp can be

Utility Commands 2021-07-12 170

TXR(1) TXR Programming Language TXR(1)

obtained in TXR Lisp using the
(or (fboundp x) (mboundp x) (special-operator-p x))
expression.

The mboundp function doesn’t exist in ANSI Common Lisp.

9.7.3 Function makunbound
Syntax:

(makunbound symbol)
Description:

The function makunbound the binding of symbol from either the dynamic environment or the
global symbol macro environment. After the call to makunbound, symbol appears to be
unbound.

If the makunbound call takes place in a scope in which there exists a dynamic rebinding of
symbol, the information for restoring the previous binding is not affected by makunbound.
When that scope terminates, the previous binding will be restored.

If the makunbound call takes place in a scope in which the dynamic binding for symbol is the
global binding, then the global binding is removed. When the global binding is removed, then if
symbol was previously marked as special (for instance by de fvar) this marking is removed.

Otherwise if symbo1 has a global symbol macro binding, that binding is removed.

If symbol has no apparent dynamic binding, and no global symbol macro binding, makun-
bound does nothing.

In all cases, makunbound returns symbol.

Dialect Note:

The behavior of makunbound differs from its counterpart in ANSI Common Lisp.

The makunbound function in Common Lisp only removes a value from a dynamic variable. The
dynamic variable does not cease to exist, it only ceases to have a value (because a binding is a
value). In TXR Lisp, the variable ceases to exist. The binding of a variable isn’t its value, it is the
variable itself: the association between a name and an abstract storage location, in some environ-
ment. If the binding is undone, the variable disappears.

The makunbound function in Common Lisp does not remove global symbol macros, which are
not considered to be bindings in the variable namespace. That is to say, the Common Lisp
boundp does not report true for symbol macros.

The Common Lisp makunbound also doesn’t remove the special attribute from a symbol. If a
variable is introduced with defvar and then removed with makunbound, the symbol continues
to exhibit dynamic binding rather than lexical in subsequent scopes. In TXR Lisp, if a global
binding is removed, so is the special attribute.

Utility Commands 2021-07-12 171

TXR(1) TXR Programming Language TXR(1)

9.7.4 Functions fmakunbound and mmakunbound

Syntax:
(fmakunbound symbol)
(mmakunbound symbol)
Description:
The function fmakunbound removes any binding for symbol from the function namespace of
the global environment. If symbol has no such binding, it does nothing. In either case, it returns
symbol.
The function mmakunbound removes any binding for symbol from the operator macro names-
pace of the global environment. If symbol has no such binding, it does nothing. In either case, it
returns symbol.
Dialect Note:

The behavior of fmakunbound differs from its counterpart in ANSI Common Lisp. The
fmakunbound function in Common Lisp removes a function or macro binding, which do not
coexist.

The mmakunbound function doesn’t exist in Common Lisp.

9.7.5 Function func-get—-form
Syntax:

(func—-get-form func)
Description:

The func-get-form function retrieves a source code form of func, which must be an inter-
preted function. The source code form has the syntax (name arglist body-form*)

9.7.6 Function func-get—-name
Syntax:
(func—-get—-name func [env])
Description:
The func—get—name tries to resolve the function object func to a name. If that is not possible,
it returns nil.

The resolution is performed by an exhaustive search through up to three spaces.

If an environment is specified by env, then this is searched first. If a binding is found in that envi-
ronment which resolves to the function, then the search terminates and the binding’s symbol is
returned as the function’s name.

If the search through environment env fails, or if that argument is not specified, then the global
environment is searched for a function binding which resolves to func. If such a binding is
found, then the search terminates, and the binding’s symbol is returned. If two or more symbols in
the global environment resolve to the function, it is not specified which one is returned.

If the global function environment search fails, then the function is considered as a possible macro.
The global macro environment is searched for a macro binding whose expander function is func,

Utility Commands 2021-07-12 172

TXR(1) TXR Programming Language TXR(1)

similarly to the way the function environment was searched. If a binding is found, then the syntax
(macro name) is returned, where name is the name of the global macro binding that was
found which resolves to func. If two or more global macro bindings share func, it is not speci-
fied which of those bindings provides name.

If the global macro search fails, then func is considered as a possible method. The static slot
space of all struct types is searched for a slot which contains func. If such a slot is found, then
the method name is returned, consisting of the syntax (meth type name) where type is a
symbol denoting the struct type and name is the static slot of the struct type which holds func.

A check is also performed whether func might be equal to one of the two special functions of a
structure type: its initfun or postinitfun, in which case it is returned as either the (meth
type :init) orthe (meth type :postinit) syntax.

If func is an interpreted function not found under any name, then a lambda expression denoting
that function is returned in the syntax (lambda args form*)

If func cannot be identified as a function, then ni1 is returned.

9.7.7 Function func-get-env
Syntax:

(func—get—-env func)
Description:

The func-get-env function retrieves the environment object associated with function func.
The environment object holds the captured bindings of a lexical closure.

9.7.8 Functions fun—-fixparam—-count and fun-optparam-count
Syntax:

(fun-fixparam-count func)
(fun-optparam-count func)

Description:

The fun-fixparam-count reports func’s number of fixed parameters. The fixed parameters
consist of the required parameters and the optional parameters. Variadic functions have a parame-
ter which captures the remaining arguments which are in excess of the fixed parameters. That
parameter is not considered a fixed parameter and therefore doesn’t contribute to this count.

The fun-optparam—count reports func’s number of optional parameters.

The func argument must be a function.

Note: if a function isn’t variadic (see the fun-variadic function) then the value reported by
fun-fixparam-count represents the maximum number of arguments which can be passed to
the function. The minimum number of required arguments can be calculated for any function by

subtracting the value from fun-optparam-count from the value from fun-fixparam-
count.

9.7.9 Function fun-variadic

Syntax:

Utility Commands 2021-07-12 173

TXR(1) TXR Programming Language TXR(1)

(fun-variadic func)

Description:

The fun-variadic function returns t if func is a variadic function, otherwise nil.

The func argument must be a function.

9.7.10 Function interp-fun-p
Syntax:

(interp-fun-p obj)
Description:

The interp-fun-p function returns t if obj is an interpreted function, otherwise it returns
nil.

9.7.11 Function vm—-fun-p
Syntax:

(vm—-fun-p obj)
Description:

The vm—-fun-p function returns t if obj a function compiled for the virtual machine: a function
representation produced by means of the functions compile-file, compile-toplevel or
compile. If objis of any other type, the function returns nil.

9.7.12 Function special-var-p
Syntax:

(special-var-p obj)
Description:

The special-var—-p function returns t if objis a symbol marked for special variable binding,
otherwise it returns nil. Symbols are marked special by defvar and defparm.

9.7.13 Function special-operator-p
Syntax:

(special-operator-p obj)
Description:

The special-operator—p function returns t if objis a symbol which names a special oper-
ator, otherwise it returns nil.

9.8 Object Type

In TXR Lisp, objects obey the following type hierarchy. In this type hierarchy, the internal nodes denote
abstract types: no object is an instance of an abstract type. Nodes in square brackets indicate an internal
structure in the type graph, invisible to programs, and angle brackets indicate a plurality of types which are
not listed by name:

t -————+-—— [cobj types] —---+--- hash

Utility Commands 2021-07-12 174

TXR(1) TXR Programming Language TXR(1)

| +-—— hash-iter

| |

| +-—— stream

| |

| +--- random-state

| |

| +--- regex

| |

| +-——— buf

| |

| +--- tree

| |

| +-—— tree-iter

| |

| +--— seg-iter

| |

| +-—— cptr

| |

| +-—- dir

| |

| +-—— struct-type

| |

| +-—— <all structures>
| |

| +--— ... others

|

|

+-—- sequence —-—--+-—- string —--—+--— str
| | |

| | +-——— lstr
| | |

| | +-—— 1lit
| |

| +-—— list —-——+--- null
| | |

| | +-—— cons
| | |

| | +-—-- lcons
| |

| +-—— vec

| |

| +-—— <structures with car or length methods>
|

+-—— number ---+--- float

|

| +-—— integer —---+--— fixnum
| |

| +-—- bignum
|

+-—— sym

|

+-—— env

|

+-—— range

Utility Commands 2021-07-12 175

TXR(1)

TXR Programming Language TXR(1)

+——— tnode
|

+-—— pkg

|

+-—— fun

In addition to the above hierarchy, the following relationships also exist:

t ———+-—— atom -—-- <any type other than cons> --- nil
l——— cons ——-—-+--— lcons --—- nil
l——— nil
sym ——— null
struct ---- <all structures>

That is to say, the types are exhaustively partitioned into atoms and conses; an object is either a cons or
else it isn’t, in which case it is the abstract type at om.

The cons type is odd in that it is both an abstract type, serving as a supertype for the type 1cons and it is
also a concrete type in that regular conses are of this type.

The type nil is an abstract type which is empty. That is to say, no object is of type nil. This type is con-
sidered the abstract subtype of every other type, including itself.

The type nil is not to be confused with the type null which is the type of the nil symbol.
Because the type of nil is the type null and nil is also a symbol, the null type is a subtype of sym.

Lastly, the symbol st ruct serves as the supertype of all structures.

9.8.1 Function typeof
Syntax:

(typeof value)
Description:

The typeof function returns a symbol representing the type of value.

The core types are identified by the following symbols:
cons Cons cell.
str String.
lit Literal string embedded in the TXR executable image.

chr Character.

Utility Commands 2021-07-12 176

TXR(1)

TXR Programming Language

fixnum

Fixnum integer: an integer that fits into the value word, not having to be heap-allocated.

bignum
A bignum integer: arbitrary precision integer that is heap-allocated.

float Floating-point number.

sym Symbol.

pkg Symbol package.

fun Function.

vec Vector.

lcons Lazy cons.

range Range object.

lstr Lazy string.

env Function/variable binding environment.

hash Hash table.

stream
I/O stream of any kind.

regex Regular-expression object.

struct-type

A structure type: the type of any one of the values which represents a structure type.

tnode Binary search tree node.

tree Binary search tree.

args Function argument list represented as an object.

There are more kinds of objects, such as user-defined structures.

9.8.2 Function subtypep
Syntax:

(subtypep left-type-symbol right-type-symbol)

Utility Commands 2021-07-12

TXR(1)

177

TXR(1)

TXR Programming Language TXR(1)

Description:

The subtypep function tests whether left-type-symbol and right-type-symbol
name a pair of types, such that the left type is a subtype of the right type.

If either argument doesn’t name a type, the behavior is unspecified.

Each type is a subtype of itself. Most other type relationships can be inferred from the type hierar-
chy diagrams given in the introduction to this section.

In addition, there are inheritance relationships among structures. If Ieft-type-symbol and
right-type-symbol both name structure types, then subtypep yields true if the types are
the same struct type, or if the right type is a direct or indirect supertype of the left.

The type symbol st ruct is a supertype of all structure types.

9.8.3 Function typep

Syntax:

(typep object type-symbol)

Description:

The typep function tests whether the type of ob ject is a subtype of the type named by type-—
symbol.

The following equivalence holds:

(typep a b) ——> (subtypep (typeof a) b)

9.8.4 Macro typecase

Syntax:

(typecase test-form { (type-sym clause—-form*)}*)

Description:

The typecase macro evaluates test—rform and then successively tests its type against each
clause.

Each clause consists of a type symbol type-sym and zero or more clause-forms.

The first clause whose t ype-symis a supertype of the type of test-form’s value is considered
to be the matching clause. That clause’s clause—-forms are evaluated, and the value of the last
form is returned.

If there is no matching clause, or there are no clauses present, or the matching clause has no
clause-forms, then nil is returned.

Note: since t is the supertype of every type, a clause whose type-sym is the symbol t always
matches. If such a clause is placed as the last clause of a t ypecase, it provides a fallback case,
whose forms are evaluated if none of the previous clauses match.

9.8.5 Function built-in-type-p

Utility Commands 2021-07-12 178

TXR(1) TXR Programming Language TXR(1)

Syntax:
(built-in-type-p object)
Description:

The built-in-type-p function returns t if object is a symbol which is the name of a built-
in type. For all other objects it returns nil.

9.9 Object Equivalence
9.9.1 Functions identity, identity* and use
Syntax:

(identity value)
(identity* value*)
(use value)

Description:

The ident ity function returns its argument.

If the identity™* function is given at least one argument, then it returns its leftmost argument,
otherwise it returns nil.

The use function is a synonym of identity.

Notes:

The identity function is useful as a functional argument, when a transformation function is
required, but no transformation is actually desired. In this role, the use synonym leads to read-
able code. For instance:

;7 construct a function which returns its integer argument

;; 1f it is odd, otherwise it returns its successor.

;; "If it’s odd, use it, otherwise take its successor".

[1ff oddp use succ]

;7 Applications of the function:

[[i1ff oddp use succ] 3] -> 3 ;; use applied to 3

[[i1ff oddp use succ] 2] -> 3 ;; succ applied to 2

9.9.2 Functions null, not and false

Syntax:
(null value)
(not value)
(false value)
Description:

The null, not and false functions are synonyms. They tests whether value is the object
nil. They return t if this is the case, nil otherwise.

Utility Commands 2021-07-12 179

TXR(1) TXR Programming Language TXR(1)

Examples:

null " ()) —> t
null nil) —-> t
null ()) -> t
false t) —> nil

(
(
(
(

(if (null x) (format t "x is nil!"™))

(let ((list " (b c d)))
(if (not (memg ’"a list))
(format t "list “s does not contain the symbol a\n")))

9.9.3 Functions t rue and have
Syntax:

(true value)
(have value)

Description:
The t rue function is the complement of the null, not and false functions. The have func-
tion is a synonym for t rue.

It return t if the value is any object other than nil. If valueisnil,itreturns nil.

Note: programs should avoid explicitly testing values with true. For instance (if x ...)
should be favored over (if (true x) ...). However, the latter is useful with the ifa
macro because (ifa (true expr) ...) binds the it variable to the value of expr, no
matter what kind of form expr is, which is not true in the (ifa expr ...) form.

Example:

;; Compute indices where the list ' (1 nil 2 nil 3)
;; has true values:
[where " (1 nil 2 nil 3) true] -> (1 3)

9.9.4 Functions eq, eql and equal

Syntax:
(eq left-obj right-obj)
(eql left-obj right-obj)
(equal left-obj right-obj)
Description:

The principal equality test functions eq, eql and equal test whether two objects are equivalent,
using different criteria. They return t if the objects are equivalent, and nil otherwise.

The eq function uses the strictest equivalence test, called implementation equality. The eq func-
tion returns t if and only if, Ieft-obj and right-obj are actually the same object. The eq
test is is implemented by comparing the raw bit pattern of the value, whether or not it is an imme-
diate value or a pointer to a heaped object. Two character values are eq if they are the same char-
acter, and two fixnum integers are eq if they have the same value. All other object representations
are actually pointers, and are eq if and only if they point to the same object in memory. So, for
instance, two bignum integers might not be eq even if they have the same numeric value, two lists

Utility Commands 2021-07-12 180

TXR(1)

TXR Programming Language TXR(1)

might not be eq even if all their corresponding elements are eq and two strings might not be eq
even if they hold identical text.

The eqgl function is slightly less strict than eq. The difference between eql and eq is that if
left-objand right-obj are numbers which are of the same kind and have the same numeric
value, eql returns t, even if they are different objects. Note that an integers and a floating-point
number are not egl even if one has a value which converts to the other: thus, (eql 0.0 0)
yields nil; a comparison expression which finds these numbers equalis (= 0.0 0). The eql
function also specially treats range objects. Two distinct range objects are eql if their correspond-
ing fromand to fields are eql. For all other object types, eql behaves like eq.

The equal function is less strict still than egl. In general, it recurses into some kinds of aggre-
gate objects to perform a structural equivalence check. For struct types, it also supports cus-
tomization via equality substitution. See the Equality Substitution section under Structures.

Firstly, if Ieft-obj and right-obj are eql then they are also equal, though the converse
isn’t necessarily the case.

If two objects are both cons cells, then they are equal if their car fields are equal and their cdr
fields are equal.

If two objects are vectors, they are equal if they have the same length, and their corresponding
elements are equal.

If two objects are strings, they are equal if they are textually identical.

If two objects are functions, they are equal if they have equal environments, and if they have
the same code. Two compiled functions are considered to have the same code if and only if they
are pointers to the same function. Two interpreted functions are considered to have the same code
if their list structure is equal.

Two hashes are equal if they use the same equality (both are :equal-based, or both are
:eqgl-based or else both are : eg-based), if their associated user data elements are equal (see
the function hash-userdata), if their sets of keys are identical, and if the data items associated
with corresponding keys from each respective hash are equal objects.

Two ranges are equal if their corresponding to and from fields are equal.

For some aggregate objects, there is no special semantics. Two arguments which are symbols,
packages, or streams are equal if and only if they are the same object.

Certain object types have a custom equal function.

9.9.5 Functions neq, neql and nequal

Syntax:
(neq left-obj right-obj)
(neqgl lIeft-obj right-obj)
(nequal left-obj right-obj)
Description:

The functions neq, neqgl and nequal are logically negated counterparts of, respectively, eq,
egl and equal.

Utility Commands 2021-07-12 181

TXR(1)

TXR Programming Language TXR(1)

If eq returns t for a given pair of arguments Ileft-obj and right-obj, then neq returns
nil. Vice versa, if eqreturns nil, neq returns t.

The same relationship exits between egl and neql, and between equal and nequal.

9.9.6 Functions meq, meql and mequal

Syntax:
(meq left-obj right-obj*)
(meqgl lIeft-obj right-obj*)
(mequal left-obj right-obj*)
Description:

The functions meq, meql and mequal ("member equal" or "multi-equal") provide a particular
kind of a generalization of the binary equality functions eq, eql and equal to multiple argu-
ments.

The Ieft-obj value is compared to each right-obj value using the corresponding binary
equality function. If a match occurs, then t is returned, otherwise nil.

The traversal of the right—-obj argument values proceeds from left to right, and stops when a
match is found.

9.9.7 Function less

Syntax:

(less left-obj right-obj)
(less obj obj*)

Description:

The less function, when called with two arguments, determines whether l1eft—-obj compares
less than right—ob3jin a generic way which handles arguments of various types.

The argument syntax of less is generalized. It can accept one argument, in which case it uncon-
ditionally returns t regardless of that argument’s value. If more than two arguments are given,
then less generalizes in a way which can be described by the following equivalence pattern, with
the understanding that each argument expression is evaluated exactly once:

(less a b ¢c) <——> (and (less a b) (less b c))
(less a b ¢ d) <——> (and (less a b) (less b c) (less c d))

The less function is used as the default for the 1essfun argument of the functions sort and
merge, as well as the test fun argument of the pos-min and £ind-min.

The less function is capable of comparing numbers, characters, symbols, strings, as well as lists
and vectors of these. It can also compare buffers.

If both arguments are the same object so that (eq left-obj right-ob3j) holds true, then
the function returns nil regardless of the type of Ieft-obj, even if the function doesn’t handle
comparing different instances of that type. In other words, no object is less than itself, no matter
what it is.

The less function pairs with the equal function. If values a and b are objects which are of suit-
able types to the 1ess function, then exactly one of the following three expressions must be true:

Utility Commands 2021-07-12 182

TXR(1)

TXR Programming Language TXR(1)

(equal a b), (less a b) or (less b a).

The less relation is: antisymmetric, such that if (less a b) is true, then then (less b a)
is false; irreflexive, such that (1less a a) is false; and transitive, such that (less a b) and
(less b c) imply (less a c).

The following are detailed criteria that 1ess applies to arguments of different types and combina-
tions thereof.

If both arguments are numbers or characters, they are compared as if using the < function.
If both arguments are strings, they are compared as if using the st ring-1t function.

If both arguments are symbols, the following rules apply. If the symbols have names which are
different, then the result is that of their names being compared by the string-1t function. If
less is passed symbols which have the same name, and neither of these symbols has a home
package, then the raw bit patterns of their values are compared as integers: effectively, the object
with the lower machine address is considered lesser than the other. If only one of the two same-
named symbols has no home package, then if that symbol is the left argument, less returns t,
otherwise nil. If both same-named symbols have home packages, then the result of 1ess is that
of string-1t applied to the names of their respective packages. Thus a:foo is less than
z:foo.

If both arguments are conses, then they are compared as follows:

1. The less function is recursively applied to the car fields of both arguments. If it yields
true, then left—-ob7jis deemed to be less than right-obj.

2. Otherwise, if the car fields are unequal under the equal function, less returns nil.

If the car fields are equal then less is recursively applied to the cdr fields of the
arguments, and the result of that comparison is returned.

This logic performs a lexicographic comparison on ordinary lists such that for instance (1 1) is
lessthan (1 1 1) butnotlessthan (1 0) or (1).

Note that the empty nil list nil compared to a cons is handled by type-based precedence,
described below.

Two vectors are compared by less lexicographically, similarly to strings. Corresponding ele-
ments, starting with element 0, of the vectors are compared until an index position is found where
corresponding elements of the two vectors are not equal. If this differing position is beyond the
end of one of the two vectors, then the shorter vector is considered to be lesser. Otherwise, the
result of 1ess is the outcome of comparing those differing elements themselves with less.

Two buffers are also compared by less lexicographically, as if they were vectors of integer byte
values.

Two ranges are compared by less using lexicographic logic similar to conses and vectors. The
from fields of the ranges are first compared. If they are not equal, equal then less is applied to
those fields and the result is returned. If the from fields are equal, then less is applied to the
to fields and that result is returned.

If the two arguments are of the above types, but of different types from each other, then less
resolves the situation based on the following precedence: numbers and characters are less than
ranges, which are less than strings, which are less than symbols, which are less than conses, which

Utility Commands 2021-07-12 183

TXR(1) TXR Programming Language TXR(1)

are less than vectors, which are less than buffers.

Note that since nil is a symbol, it is ranked lower than a cons. This interpretation ensures correct
behavior when nil is regarded as an empty list, since the empty list is lexicographically prior to a
nonempty list.

If either argument is a structure for which the equal method is defined, the method is invoked on
that argument, and the value returned is used in place of that argument for performing the compar-
ison. Structures with no equal method cannot participate in a comparison, resulting in an error.
See the Equality Substitution section under Structures.

Finally, if either of the arguments has a type other than the above types, the situation is an error.

9.9.8 Function greater
Syntax:

(greater left-obj right-obj)
(greater obj obj*)

Description:
The greater function is equivalent to 1ess with the arguments reversed. That is to say, the fol-

lowing equivalences hold:

(greater a <--> (less a) <--> t
(greater a b) <--> (less b a)
(greater a b ¢c ...) <——> (less ... c b a)

The greater function is used as the default for the test fun argument of the pos-max and
find-max functions.

9.9.9 Functions 1equal and gequal
Syntax:

(lequal obj obj*)
(gequal obj obj*)

Description:

The functions 1lequal and gequal are similar to less and greater respectively, but differ in
the following respect: when called with two arguments which compare true under the equal
function, the lequal and gequal functions return t.

When called with only one argument, both functions return t and both functions generalize to
three or more arguments in the same way as do less and greater.

9.9.10 Function copy
Syntax:

(copy object)
Description:

The copy function duplicates objects of various supported types: sequences, hashes, structures
and random states. If object is nil, it returns nil. Otherwise, copy is equivalent to invoking
a more specific copying function according to the type of the argument, as follows:

Utility Commands 2021-07-12 184

TXR(1)

TXR Programming Language TXR(1)

cons (copy-list object)
str (copy—-str object)
vec (copy-vec object)

hash (copy-hash object)

struct type
(copy—-struct object)

fun (copy—-fun object)
buf (copy-buf object)

carray
(copy—-carray object)

random—-state
(make-random-state object)

tnode (copy-tnode object)
tree (copy-search-tree object)

tree-iter
(copy-tree-iter object)

For all other types of object, the invocation is erroneous.

Except in the case when sequence is nil, copy returns a value that is distinct from (not eq to)
sequence. This is different from the behavior of [sequence 0..t] or (sub sequence
0 t) whichrecognize that they need not make a copy of sequence, and just return it.

Note however, that the elements of the returned sequence may be eq to elements of the original
sequence. In other words, copy is a deeper copy than just duplicating the sequence value itself,
but it is not a deep copy.

9.10 List Manipulation

9.10.1 Function cons

Syntax:

(cons car-value cdr-value)

Description:

The cons function allocates, initializes and returns a single cons cell. A cons cell has two fields
called car and cdr, which are accessed by functions of the same name, or by the functions
first and rest, which are synonyms for these.

Lists are made up of conses. A (proper) list is either the symbol nil denoting an empty list, or a
cons cell which holds the first item of the list in its car, and the list of the remaining items in
cdr. The expression (cons 1 nil) allocates and returns a single cons cell which denotes the
one-element list (1). The cdr is nil, so there are no additional items.

A cons cell whose cdr is an atom other than nil is printed with the dotted pair notation. For
example the cell produced by (cons 1 2) isdenoted (1 . 2). The notation (1 . nil) is
perfectly valid as input, but the cell which it denotes will print back as (1). The notations are
equivalent.

The dotted pair notation can be used regardless of what type of object is the cons cell’s cdr. so

Utility Commands 2021-07-12 185

TXR(1)

TXR Programming Language TXR(1)
that for instance (a . (b c)) denotes the cons cell whose car is the symbol a a and whose
cdr is the list (b c¢). This is exactly the same thing as (a b c). In other words (a b
lm. (no ... w. (xvy z)))isexactlythesameas (a b ... 1 mn o ... w

XV z).

Every list, and more generally cons-cell tree structure, can be written in a "fully dotted" notation,
such that there are as many dots as there are cells. For instance the cons structure of the nested list
(1 (2) (3 4 (5))) canbe made more explicitusing (1 . ((2 . nil) . ((3 . (4

((5 . nil) . nil))) . nil)))). The structure contains eight conses, and so there
are eight dots in the fully dotted notation.

The number of conses in a linear list like (1 2 3) is simply the number of items, so that list in
particular is made of three conses. Additional nestings require additional conses, so for instance
(1 2 (3)) requires four conses. A visual way to count the conses from the printed representa-
tion is to count the atoms, then add the count of open parentheses, and finally subtract one.

A list terminated by an atom other than nil is called an improper list, and the dot notation is
extended to cover improper lists. For instance (1 2 . 3) is an improper list of two elements,
terminated by 3, and can be constructed using (cons 1 (cons 2 3)). The fully dotted nota-
tion for this listis (1 . (2 . 3)).

9.10.2 Function at om
Syntax:
(atom value)
Description:
The at om function tests whether value is an atom. It returns t if this is the case, nil otherwise.

All values which are not cons cells are atoms.

(atom x) isequivalentto (not (consp x)).

Examples:

atom 3) -> t

atom (cons 1 2)) —-> nil
atom "abc") -> t

atom ’ (3)) —-> nil

(
(
(
(
9.10.3 Function consp
Syntax:
(consp value)
Description:
The consp function tests whether value is a cons. It returns t if this is the case, nil other-
wise.

(consp x) isequivalentto (not (atom x)).

Nonempty lists test positive under consp because a list is represented as a reference to the first
cons in a chain of one or more conses.

Note that a lazy cons is a cons and satisfies the consp test. See the function make-lazy-cons

Utility Commands 2021-07-12 186

TXR(1) TXR Programming Language TXR(1)

and the macro 1cons.

Examples:

(consp 3) -> nil

(consp (cons 1 2)) -> t
(consp "abc") -> nil
(consp " (3)) —> t

9.10.4 Accessors car and first

Syntax:
(car object)
(first object)
(set (car object) new-value)
(set (first object) new-value)
Description:

The functions car and first are synonyms.

If object is a cons cell, these functions retrieve the car field of that cons cell. (car (cons
1 2)) yields 1.

For programming convenience, ob ject may be of several other kinds in addition to conses.
(car nil) is allowed, and returns nil.

object may also be a vector or a string. If it is an empty vector or string, then nil is returned.
Otherwise the first character of the string or first element of the vector is returned.

object may be a structure. The car operation is possible if the object has a car method. If so,
car invokes that method and returns whatever the method returns. If the structure has no car
method, but has a 1lambda method, then the car function calls that method with one argument,
that being the integer zero. Whatever the method returns, car returns. If neither method is
defined, an error exception is thrown.

A car form denotes a valid place whenever ob ject is a valid argument for the rplaca func-
tion. Modifying the place denoted by the form is equivalent to invoking rplaca with object as
the left argument, and the replacement value as the right argument. It takes place in the manner
given under the description rplaca function, and obeys the same restrictions.

A car form supports deletion. The following equivalence then applies:
(del (car place)) <—-—> (pop place)

This implies that deletion requires the argument of the car form to be a place, rather than the
whole form itself. In this situation, the argument place may have a value which is nil, because
pop is defined on an empty list.

The abstract concept behind deleting a car is that physically deleting this field from a cons,
thereby breaking it in half, would result in just the cdr remaining. Though fragmenting a cons in
this manner is impossible, deletion simulates it by replacing the place which previously held the
cons, with that cons’ cdr field. This semantics happens to coincide with deleting the first element
of a list by a pop operation.

Utility Commands 2021-07-12 187

TXR(1)

TXR Programming Language TXR(1)

9.10.5 Accessors cdr and rest

Syntax:
(cdr object)
(rest object)
(set (cdr object) new-value)
(set (rest object) new-value)
Description:

The functions cdr and rest are synonyms.

If object is a cons cell, these functions retrieve the cdr field of that cons cell. (cdr (cons
1 2)) yields 2.

For programming convenience, ob ject may be of several other kinds in addition to conses.
(cdr nil) is allowed, and returns nil.

object may also be a vector or a string. If it is a nonempty string or vector containing at least
two items, then the remaining part of the object is returned, with the first element removed. For
example (cdr "abc") yields "bc". If object is is a one-element vector or string, or an
empty vector or string, then nil is returned. Thus (cdr "a") and (cdr "") both result in
nil.

If object is a structure, then cdr requires it to support either the cdr method or the 1ambda
method. If both are present, cdr is used. When the cdr function uses the cdr method, it invokes
it with no arguments. Whatever value the method returns becomes the return value of cdr. When
cdr invokes a structure’s 1ambda method, it passes as the argument the range object #R (1 t).
Whatever the 1ambda method returns becomes the return value of cdr.

The invocation syntax of a cdr or rest form is a syntactic place. The place is semantically cor-
rect if object is a valid argument for the rplacd function. Modifying the place denoted by the
form is equivalent to invoking rplacd with object as the left argument, and the replacement
value as the right argument. It takes place in the manner given under the description rplacd
function, and obeys the same restrictions.

A cdr place supports deletion, according to the following near equivalence:

(del (cdr place)) <——> (progl (cdr place)
(set place (car place)))

The place expression is evaluated only once.

Note that this is symmetric with the delete semantics of car in that the cons stored in place
goes away, as does the cdr field, leaving just the car, which takes the place of the original cons.

Example:
Walk every element of the list (1 2 3) using a for loop:
(for ((i "(1 2 3))) (i) ((set 1 (cdr 1)))

(print (car i) *stdout*)
(print #\newline *stdout*))

Utility Commands 2021-07-12 188

TXR(1)

TXR Programming Language TXR(1)

The variable i marches over the cons cells which make up the "backbone" of the list. The ele-
ments are retrieved using the car function. Advancing to the next cell is achieved using (cdr
i). If 1 is the last cell in a (proper) list, (cdr i) yields nil and so i becomes nil, the loop
guard expression i fails and the loop terminates.

9.10.6 Functions rplaca and rplacd

Syntax:

(rplaca object new-car-value)
(rplacd object new-cdr-value)

Description:

If object is a cons cell or lazy cons cell, then rplaca and rplacd functions assign new val-
ues into the car and cdr fields of the object. In addition, these functions are meaningful for
other kinds of objects also.

Note that, except for the difference in return value, (rplaca x y) is the same as the more
generic (set (car x) y),and likewise (rplacd x y) canbe written as (set (cdr x)

y).

The rplaca and rplacd functions return cons. Note: In TXR versions 89 and earlier, these
functions returned the new value. The behavior was undocumented.

The cons argument does not have to be a cons cell. Both functions support meaningful semantics
for vectors and strings. If cons is a string, it must be modifiable.

The rplaca function replaces the first element of a vector or first character of a string. The vec-
tor or string must be at least one element long.

The rplacd function replaces the suffix of a vector or string after the first element with a new
suffix. The new-cdr-value must be a sequence, and if the suffix of a string is being replaced, it
must be a sequence of characters. The suffix here refers to the portion of the vector or string after
the first element.

It is permissible to use rplacd on an empty string or vector. In this case, new—cdr-value
specifies the contents of the entire string or vector, as if the operation were done on a nonempty
vector or string, followed by the deletion of the first element.

The object argument may be a structure. In the case of rplaca, the structure must have a
defined rplaca method or else, failing that, a 1ambda-set method. The first of these methods
which is available, in the given order, is used to perform the operation. Whatever the respective
method returns, If the lambda-set method is used, it is called with two arguments (in addition
to object): the integer zero, and new—car-value.

In the case of rplacd, the structure must have a defined rplacd method or else, failing that, a
lambda-set method. The first of these methods which is available, in the given order, is used to
perform the operation. Whatever the respective method returns, If the 1ambda-set method is
used, it is called with two arguments (in addition to object): the range value #R (1 t) and
new—-car-value.

9.10.7 Accessors second, third, fourth, fifth, sixth, seventh,eighth,ninth and tenth

Syntax:

(first object)

Utility Commands 2021-07-12 189

TXR(1)

TXR Programming Language TXR(1)

(second object)
(third object)
(fourth object)
(fifth object)
(sixth object)
(seventh object)
(eighth object)
(ninth object)
(tenth object)
(set (first object) new-value)
(set (second object) new-value)

(set (tenth object) new-value)

Description:

Used as functions, these accessors retrieve the elements of a sequence by position. If the sequence
is shorter than implied by the position, these functions return nil.

When used as syntactic places, these accessors denote the storage locations by position. The loca-
tion must exist, otherwise an error exception results. The places support deletion.

Examples:

(third 7 (1 2)) —-> nil
(second "ab") -> #\b
(third " (1 2 . 3)) —-> **error, improper list*

(let ((x (copy "abcd")))
(inc (third x))
x) —> "abce"

9.10.8 Functions append and nconc

(append [sequence*])
(nconc [sequence*])

Description:

The append function creates a new object which is a catenation of the 1ist arguments. All
arguments are optional; append produces the empty list, and if a single argument is specified,
that argument is returned.

If two or more arguments are present, then the situation is identified as one or more sequence
arguments followed by Iast-arg. The sequence arguments must be sequences; last-arg
may be a sequence or atom.

The append operation over three or more arguments is left-associative, such that (append x y
z) is equivalent to both (append (append x y) z) and (append x (append z y)).

This allows the catenation of an arbitrary number of arguments to be understood in terms of a
repeated application of the two-argument case, whose semantics is given by these rules:

1. nil catenates with nil to produce nil:
(append nil nil) -> nil

Utility Commands 2021-07-12 190

TXR(1)

TXR Programming Language TXR(1)

2. nil catenates with a proper or improper list, producing that list itself:
(append nil " (1 2)) -> (1 2)
(append nil (1 2 . 3)) -> (1 2 . 3)

3. A proper list catenates with nil, producing that list itself:
(append 7 (1 2) nil) -> (1 2)

4. A proper list catenates with an atom, producing an improper list terminated by that atom,
whether or not that atom is a sequence:
(append 7 (1 2) #(3)) —> (1 2 . #(3))
(append " (1 2) 3) -> (1 2 . 3)

5. A non-list sequence catenates with another sequence into a sequence, producing a
sequence which contains the elements of both, of the same kind as the left sequence. The
elements must be compatible; a string can only catenate with a sequence of characters.

(append #(1 2) #(3 4)) —> #(1 2 3 4)
(append "ab" "cd") -> "abcd"

(append "ab" # (#\c #\d)) -> "abcd"
(append "ab" #(3 4)) -> ;; error

6. A non-list sequence catenates with an atom if it is a suitable element type for that kind of
sequence. The resulting sequence is of the same kind, and includes that atom:
(append #(1 2) 3) —> #(1 2 3)
(append "ab" # (append "ab" 3) -> ;; error

7. If an improper list is catenated with any object, the catenation takes place between the
terminating atom of that list and that object. This requires the terminating atom to be a
sequence. If the catenation is possible, then the result is a new improper list which is a
copy of the original, but with the terminating atom replaced by a catenation of that atom
and the object:

(append " (1 2 . "ab") "c") -> (1 2 . "abc")
(append " (1 2 . "ab") (2 3)) -> ;; error
8. A non-sequence atom doesn’t catenate; the situation is erroneous:

(append 1 2) -> ;; error
(append " (1 . 2) 3) -> ;; error

If N arguments are specified, where N > 1, then the first N-1 arguments must be proper lists.
Copies of these lists are catenated together. The last argument N, shown in the above syntax as
last-arg, may be any kind of object. It is installed into the cdr field of the last cons cell of the
resulting list. Thus, if argument N is also a list, it is catenated onto the resulting list, but without
being copied. Argument N may be an atom other than nil; in that case append produces an
improper list.

The nconc function works like append, but may destructively manipulate any of the input
objects.

Examples:

;; An atom is returned.
(append 3) -> 3

;7 A list is also just returned: no copying takes place.
;7 The eq function can verify that the same object emerges
;; from append that went in.
(let ((list "(1 2 3)))

(eq (append list) list)) -> t

Utility Commands 2021-07-12 191

TXR(1) TXR Programming Language TXR(1)

(append " (1 2 3) "(456) 7) —>'"(1L 23 456 . 7))

;7 the (4 5 6) tail of the resulting list is the original
;7 (4 5 6) object, shared with that list.

(append (1 2 3) (4 56)) —>'"(1 2 3 45 6)
(append nil) -> nil

;7 (1L 2 3) is copied: it is not the last argument
(append " (1 2 3) nil) -> (1 2 3)

;; empty lists disappear
(append nil " (1 2 3) nil (4 5 6)) —> (1 2 3 4 5 6)
(append nil nil nil) -> nil

;; atoms and improper lists other than in the last position
;7 are erroneous
(append "(a . b) 3 (1 2 3)) —-> **error**

;7 sequences other than lists can be catenated.
(append "abc" "def" "g" #\h) -> "abcdefgh"

;7 lists followed by non-list sequences end with non-list
;; Sequences catenated in the terminating atom:
(append " (1 2) " (3 4) "abc" "def") -> (1 2 3 4 . "abcdef")

9.10.9 Function append*
Syntax:
(append* [list*])
Description:
The append* function lazily catenates lists.

If invoked with no arguments, it returns nil. If invoked with a single argument, it returns that
argument.

Otherwise, it returns a lazy list consisting of the elements of every 1ist argument from left to
right.

Arguments other than the last are treated as lists, and traversed using car and cdr functions to
visit their elements.

The last argument isn’t traversed: rather, that object itself becomes the cdr field of the last cons
cell of the lazy list constructed from the previous arguments.

9.10.10 Functions revappend and nreconc
Syntax:

(revappend listl 1ist2)
(nreconc 1istl 1ist2)

Utility Commands 2021-07-12 192

TXR(1) TXR Programming Language TXR(1)

Description:
The revappend function returns a list consisting of 1ist2 appended to a reversed copy of

1ist1. The returned object shares structure with 11ist2, which is unmodified.

The nreconc function behaves similarly, except that the the returned object may share structure
with not only 1ist2 but also 1ist1, which is modified.

9.10.11 Function 1ist
Syntax:

(list value*)

Description:

The 1ist function creates a new list, whose elements are the argument values.

Examples:

(list) —> nil
(list 1) —> (1)
(list "a 'b) -> (a b)

9.10.12 Function 1ist*

Syntax:
(list* value*)
Description:
The 1ist* function is a generalization of cons. If called with exactly two arguments, it behaves
exactly like cons: (1list* x vy) isidentical to (cons x y). If three or more arguments are
specified, the leading arguments specify additional atoms to be consed to the front of the list. So
for instance (list* 1 2 3) is the same as (cons 1 (cons 2 3)) and produces the
improper list (1 2 . 3). Generalizing in the other direction, 1ist* can be called with just
one argument, in which case it returns that argument, and can also be called with no arguments in
which case it returns nil.
Examples:
(list*) —-> nil
(list* 1) —> 1
(list* "a 'b) -> (a . Db)
(list* 'a 'b 'c) -> (a b . c)
Dialect Note:

Note that unlike in some other Lisp dialects, the effect of (1ist* 1 2 x) can also be obtained
using (list 1 2 . x). However, (list* 1 2 (func 3)) cannot be rewritten as
(list 1 2 . (func 3)) because the latter is equivalentto (1ist 1 2 func 3).

9.10.13 Accessor sub—-1ist
Syntax:

(sub—-1list 1ist [from [to]l])
(set (sub-list 1list [from [to]]) new-value)

Utility Commands 2021-07-12 193

TXR(1) TXR Programming Language TXR(1)

Description:

The sub-1ist function has the same parameters and semantics as the sub function, except that
it operates on its 11ist argument using list operations, and assumes that 11ist it is terminated by
nil.

If a sub—1ist form is used as a place, then the 11st argument form must also be a place.

The sub-1ist place denotes a subrange of 1ist as if it were a storage location. The previous
value of this location, if needed, is fetched by a call to sub—-1ist. Storing new-value to the
place is performed by a call to replace-1ist. The return value of replace-11ist is stored
into Iist. In an update operation which accesses the prior value and stores a new value, the
arguments 1ist, from, to and new—value are evaluated once.

9.10.14 Function replace-1ist
Syntax:

(replace-1list list item-sequence [from [tol])
Description:

The replace-1ist function is like the replace function, except that it operates on its 1ist
argument using list operations. It assumes that 11ist it is terminated by nil, and that it is made
of cells which can be mutated using rplaca.

9.10.15 Functions 1istp and proper-list-p
Syntax:

(listp value)
(proper—-list-p value)

Description:
The 1istp and proper-1list-p functions test, respectively, whether value is a list, or a

proper list, and return t or nil accordingly.

The 1istp test is weaker, and executes without having to traverse the object. The value produced
by the expression (listp x) is the same as that of (or (null x) (consp x)), except
that x is evaluated only once. The empty list nil is a list, and a cons cell is a list.

The proper-1ist-p function returns t only for proper lists. A proper list is either nil, or a
cons whose cdr is a proper list. proper—-1ist-—p traverses the list, and its execution will not
terminate if the list is circular.

These functions return nil for list-like sequences that are not made of actual cons cells.

Dialect Note: in TXR 137 and older, proper-1ist-p is called proper—-1listp. The name
was changed for adherence to conventions and compatibility with other Lisp dialects, like Com-
mon Lisp. However, the function continues to be available under the old name. Code that must run
on TXR 137 and older installations should use proper—-1istp, but its use going forward is dep-
recated.

9.10.16 Function endp
Syntax:

(endp object)

Utility Commands 2021-07-12 194

TXR(1) TXR Programming Language TXR(1)

Description:

The endp function returns t if object is the object nil.
If object is a cons cell, then endp returns t.

Otherwise, endp function throws an exception.

9.10.17 Function 1ength-1ist
Syntax:

(length-1list 1ist)
Description:

The 1length-1ist function returns the length of 11ist, which may be a proper or improper list.
The length of a list is the number of conses in that list.

9.10.18 Function copy-1ist
Syntax:
(copy—-list 1list)
Description:
The copy-1ist function which returns a list similar to 11 st, but with a newly allocated cons-
cell structure.

If 1ist is an atom, it is simply returned.

Otherwise, 1ist is a cons cell, and copy—-1list returns the same object as the expression
(cons (car list) (copy-list (cdr 1list))).

Note that the object (car 1ist) is not deeply copied, but only propagated by reference into
the new list. copy—11ist produces a new list structure out of the same items that are in 11 st.

Dialect Note:

Common Lisp does not allow the argument to be an atom, except for the empty list nil.

9.10.19 Function copy—-cons
Syntax:

(copy—cons cons)
Description:

The copy-cons function creates and returns a new object that is a replica of cons.
The cons argument must be either a cons cell, or else a lazy cons: an object of type 1cons.

A new cell of the same type as cons is created, and all of its fields are initialized by copying the
corresponding fields from cons.

If cons is lazy, the newly created object is in the same state as the original. If the original has not

yet been updated and thus has an update function, the copy also has not yet been updated and has
the same update function.

Utility Commands 2021-07-12 195

TXR(1)

TXR Programming Language TXR(1)

9.10.20 Function copy-tree

Syntax:

(copy-tree obj)

Description:

The copy-tree function returns a copy of obj which represents an arbitrary cons-cell-based
structure.

The cell structure of ob j is traversed and a similar structure is constructed, but without regard for
substructure sharing or circularity.

More precisely, if obj is an atom, then it is returned. If it is an ordinary cons cell, then copy—
tree is recursively applied to the car and cdr fields to produce their individual replicas. A new
cons cell is then produced from the replicated car and cdr. If ob3j is a lazy cons, then just
like in the ordinary cons case, the car and cdr fields are duplicated with a recursive call to
copy-tree. Then, a lazy cons is created from these replicated fields. If ceIl has an update
function, then the newly created lazy cons has the same update function; the function isn’t
copied.

Like copy-cons, the copy-tree function doesn’t trigger the update of lazy conses. The
copies of lazy conses which have not been updated are also conses which have not been updated.

9.10.21 Functions reverse and nreverse

Syntax:

(reverse 1ist)
(nreverse 1ist)

Description:

Description:

The functions reverse and nreverse produce an object which contains the same items as
proper list 11st, but in reverse order. If 1ist is nil, then both functions return nil.

The reverse function is non-destructive: it creates a new list.

The nreverse function creates the structure of the reversed list out of the cons cells of the input
list, thereby destructively altering it (if it contains more than one element). How nreverse uses
the material from the original list is unspecified. It may rearrange the cons cells into a reverse
order, or it may keep the structure intact, but transfer the car values among cons cells into reverse
order. Other approaches are possible.

9.10.22 Accessor nthlast

Syntax:

(nthlast index 1ist)
(set (nthlast index list) new-value)

Description:

The nthlast function retrieves the n-th last cons cell of a list, indexed from one. The index
parameter must be a an integer. If index is positive and so large that it specifies a nonexistent
cons beyond the beginning of the list, nthlast returns 1ist. Effectively, values of index
larger than the length of the list are clamped to the length. If index is negative, then nthlast

Utility Commands 2021-07-12 196

TXR(1)

TXR Programming Language TXR(1)
yields nil. An index value of zero retrieves the terminating atom of 1ist or else the value 1ist
itself, if 11ist is an atom.

The following equivalences hold:
(nthlast 1 1list) <--> (last list)

An nthlast place designates the storage location which holds the n-th cell, as indicated by the
value of index.

A negative index doesn’t denote a place.

A positive 1ndex greater than the length of the list is treated as if it were equal to the length of
the list.

If 1ist is itself a syntactic place, then the index value n is permitted for a list of length n. This
index value denotes the 1ist place itself. Storing to this value overwrites 1ist. If 1istisn’ta
syntactic place, then storing to position 7 isn’t permitted.

If 1ist isis of length zero, or an atom (in which case its length is considered to be zero) then the
above remarks about position n apply to an index value of zero: if 1ist is a syntactic place,
then the position denotes 11st itself, otherwise the position doesn’t exist as a place.

If 1ist contains one or more elements, then i ndex value of zero denotes the cdr field of its last
cons cell. Storing a value to this place overwrites the terminating atom.

9.10.23 Accessor but lastn

(butlastn num 1ist)
(set (butlastn num 1list) new-value)

Description:

The but lastn function calculates that initial portion of I11ist which excludes the last num ele-
ments.

Note: the but lastn function doesn’t support non-list sequences as sequences; it treats them as
the terminating atom of a zero-length improper list. The butlast sequence function supports
non-list sequences. If x is a list, then the following equivalence holds:

(butlastn n x) <--> (butlast x n)
If num s zero, or negative, then but lastn returns 1ist.
If num s positive, and meets or exceeds the length of 1ist, then butlastn returns nil.
If a butlastn form is used as a syntactic place, then 1ist must be a place. Assigning to the
form causes 1ist to be replaced with a new list which is a catenation of the new value and the
last num elements of the original list, according to the following equivalence:

(set (butlastn n x) V)

<==>

Utility Commands 2021-07-12 197

TXR(1) TXR Programming Language TXR(1)

(progn (set x (append v (nthlast n x))) v)

except that n, x and v are evaluated only once, in left-to-right order.

9.10.24 Accessor nth
Syntax:

(nth index object)
(set (nth index object) new-value)

Description:
The nth function performs random access on a list, retrieving the n-th element indicated by the
zero-based index value given by index. The index argument must be a nonnegative integer.
If index indicates an element beyond the end of the list, then the function returns nil.

The following equivalences hold:

(nth 0 list) <—-> (car 0) <--> (first list)
(nth 1 list) <—-> (cadr list) <--> (second list)
(nth 2 list) <—-> (caddr list) <—--> (third list)

(nth x y) <-—> (car (nthcdr x vy))

9.10.25 Accessor nthcdr
Syntax:

(nthcdr index 1ist)
(set (nthcdr index 1ist) new-value)

Description:

The nthcdr function retrieves the n-th cons cell of a list, indexed from zero. The index param-
eter must be a nonnegative integer. If index specifies a nonexistent cons beyond the end of the
list, then nthedr yields nil.

The following equivalences hold:

(nthedr 0 list) <--> 1list
(nthedr 1 list) <—-—> (cdr list)
(nthedr 2 list) <--=> (cddr list)

(car (nthcdr x y)) <-—> (nth x y)

An nthedr place designates the storage location which holds the n-th cell, as indicated by the
value of index. Indices beyond the last cell of 1ist do not designate a valid place. If 1ist is
itself a place, then the zeroth index is permitted and the resulting place denotes 1ist. Storing a
value to (nthcdr 0 1ist) overwrites 1ist. Otherwise if 1ist isn’t a syntactic place, then
the zeroth index does not designate a valid place; index must have a positive value. A nthedr
place does not support deletion.

Dialect Note:

In Common Lisp, nthecdr is only a function, not an accessor; nthcdr forms do not denote
places.

Utility Commands 2021-07-12 198

TXR(1) TXR Programming Language TXR(1)

9.10.26 Function tailp
Syntax:

(tailp object 1ist)
Description:

The tailp function tests whether object is a tail of 1ist. This means that object is either
1ist itself, or else one of the cons cells of 11ist or else the terminating atom of I11ist.

More formally, a recursive definition follows. If object and 1ist are the same object (thus
equal under the eq function) then tailp returns t. If 1ist is an atom, and is not ob ject, then
the function returns nil. Otherwise, 1ist is a cons that is not object and tailp yields the
same value as the (tailp object (cdr list)) expression.

9.10.27 Accessors caar, cadr, cdar, cddr, ..., cdddddr
Syntax:

caar object
cadr object
cdar object

(
(
(
(cddr object

)
)
)
)

(cdddr object)
(set (caar object) new-value)
(set (cadr object) new-value)

Description:

The a-d accessors provide a shorthand notation for accessing two to five levels deep into a cons-
cell-based tree structure. For instance, the the equivalent of the nested function call expression
(car (car (cdr object))) can be achieved using the single function call (caadr
object) . The symbol names of the a-d accessors are a generalization of the words "car" and
"cdr". They encode the pattern of car and cdr traversal of the structure using a sequence of the
the letters a and d placed between c and r. The traversal is encoded in right-to-left order, so that
cadr indicates a traversal of the cdr link, followed by the car. This order corresponds to the
nested function call notation, which also encodes the traversal right-to-left. The following diagram
illustrates the straightforward relationship:

(cdr (car (cdr x)))

|/ |
| 7/ /
| / /
|1/
(cdadr x)

TXR Lisp provides all possible a-d accessors up to five levels deep, from caar all the way
through cdddddr.

Expressions involving a-d accessors are places. For example, (caddr x) denotes the same place
as (car (cddr x)),and (cdadr x) denotes the same place as (cdr (cadr x)).

The a-d accessor places support deletion, with semantics derived from the deletion semantics of

the car and cdr places. For example, (del (caddr x)) means the same as (del (car
(cddr x))).

Utility Commands 2021-07-12 199

TXR(1) TXR Programming Language TXR(1)

9.10.28 Functions cyr and cxr
Syntax:

(cyr address object)
(cxr address object)

Description:
The cyr and cxr functions provide car/cdr navigation of tree structure driven by numeric

address given by the address argument.

The address argument can express any combination of the application of car and cdr func-
tions, including none at all.

The difference between cyr and cxr is the bit order of the encoding. Under cyr, the most signif-
icant bit of the encoding given in address indicates the initial car/cdr navigation, and the least
significant bit gives the final one. Under cxr, it is opposite.

Both functions require address to be a positive integer. Any other argument raises an error.

Under both functions, the address value 1 encodes the ident ity operation: no car/cdr

9.10.29 Functions flatten and flatten*
Syntax:

(flatten 1ist)
(flatten* 1ist)

Description:
The flatten function produces a list whose elements are all of the non-nil atoms contained in

the structure of 1ist.

The flatten* function works like f1atten except that it produces a lazy list. It can be used to
lazily flatten an infinite lazy structure.

Examples:
(flatten " (1 2 () (3 4))) —> (1 2 3 4)
;7 equivalent to previous, since

;5 nil is the same thing as ()
(flatten " (1 2 nil (3 4))) -> (1 2 3 4)

(flatten nil) -> nil

(flatten 7 (((()) ()))) —> nil

9.10.30 Functions flatcar and flatcar*
Syntax:

(flatcar tree)
(flatcar* tree)

Description:

The flatcar function produces a list of all the atoms contained in the tree structure t ree, in the

Utility Commands 2021-07-12 200

TXR(1) TXR Programming Language TXR(1)

order in which they appear, when the structure is traversed left to right.
This list includes those nil atoms which appear in car fields.
The list excludes nil atoms which appear in cdr fields.

The flatcar* function works like flatcar except that it produces a lazy list. It can be used to
lazily flatten an infinite lazy structure.

Examples:

(flatcar (1 2 () (3 4))) -> (1 2 nil 3 4)
(flatcar "(a (b . ¢c) d (e) (((£)) . g) (nil . z) nil . h))

-—> (abcde f gnil z nil h)

9.10.31 Function tree-find
Syntax:
(tree-find obj tree test-function)
Description:
The tree-find function searches t ree for an occurrence of obj. Tree can be any atom, or a

cons. If treeitis a cons, it is understood to be a proper list whose elements are also trees.

The equivalence test is performed by test-function which must take two arguments, and has
conventions similar to eq, eql or equal.

tree-find works as follows. If tree is equivalent to obj under test-function, then t is
returned to announce a successful finding. If this test fails, and t ree is an atom, nil is returned
immediately to indicate that the find failed. Otherwise, tree is taken to be a proper list, and
tree-find is recursively applied to each element of the list in turn, using the same obj and
test—-function arguments, stopping at the first element which returns a non-nil value.

9.10.32 Functions memg, memgl and memqual

Syntax:
(memg object 1ist)
(memgl object 1ist)
(memqual object 1list)
Description:

The memqg, memgl and memqual functions search 1ist for a member which is, respectively,
eq, eql or equal to object. (See the eq, eql and equal functions above.)

If no such element found, ni1l is returned.

Otherwise, that suffix of I11ist is returned whose first element is the matching object.

9.10.33 Functions member and member—if
Syntax:

(member key sequence [testfun [keyfunl])

Utility Commands 2021-07-12 201

TXR(1)

TXR Programming Language TXR(1)

(member-if predfun sequence [keyfun])

Description:

The member and member-1if functions search through sequence for an item which matches a
key, or satisfies a predicate function, respectively.

The keyfun argument specifies a function which is applied to the elements of the sequence to
produce the comparison key. If this argument is omitted, then the untransformed elements of the
sequence themselves are examined.

The member function’s test fun argument specifies the test function which is used to compare
the comparison keys taken from the sequence to the search key. If this argument is omitted, then
the equal function is used. If member does not find a matching element, it returns nil. Other-
wise it returns the suffix of sequence which begins with the matching element.

The member-if function’s predfun argument specifies a predicate function which is applied
to the successive comparison keys pulled from the sequence by applying the key function to suc-
cessive elements. If no match is found, then ni1l is returned, otherwise what is returned is the suf-
fix of sequence which begins with the matching element.

9.10.34 Functions rmemg, rmemgl, rmemqual, rmember and rmember—-if

Syntax:
(rmemg object 1ist)
(rmemgl object 1list)
(rmemqual object 1list)
(rmember key sequence [testfun [keyfun]])
(rmember-if predfun sequence [keyfun])
Description:

These functions are counterparts to memg, memgl, memqual, member and member—if which
look for the rightmost element which matches ob ject, rather than for the leftmost element.

9.10.35 Functions conses and conses*

Syntax:

(conses 1list)
(conses* 1ist)

Description:

These functions return a list whose elements are the conses which make up 1ist. The conses*
function does this in a lazy way, avoiding the computation of the entire list: it returns a lazy list of
the conses of 1ist. The conses function computes the entire list before returning.

The input 11st may be proper or improper.

The first cons of I1ist is that I1ist itself. The second cons is the rest of the list, or (cdr
list). Thethirdconsis (cdr (cdr list)) and so on.

Example:

(conses " (1 2 3)) —> ((1 2 3) (2 3) (3))

Utility Commands 2021-07-12 202

TXR(1) TXR Programming Language TXR(1)

Dialect Note:
These functions are useful for simulating the maplist function found in other dialects like Com-

mon Lisp.

TXR Lisp’s (conses x) can be expressed in Common Lisp as (maplist #’identity
X).

Conversely, the Common Lisp operation (maplist function 1list) can be computed in
TXR Lisp as (mapcar function (conses list)).

More generally, the Common Lisp operation
(maplist function 1list0 1listl ... listn)
can be expressed as:

(mapcar function (conses 1istO)
(conses listl) ... (conses listn))

9.11 Association Lists

Association lists are ordinary lists formed according to a special convention. Firstly, any empty list is a
valid association list. A nonempty association list contains only cons cells as the key elements. These cons
cells are understood to represent key/value associations, hence the name "association list".

9.11.1 Function assoc
Syntax:

(assoc key alist)
Description:

The assoc function searches an association list alist for a cons cell whose car field is equiva-
lent to key under the equal function. The first such cons is returned. If no such cons is found,
nil is returned.

9.11.2 Functions assg and assqgl
Syntax:

(assg key alist)
(assgl key alist)

Description:

The assqg and assqgl functions are very similar to assoc, with the only difference being that
they determine equality using, respectively, the eq and eql functions rather than equal.

9.11.3 Functions rassqg, rassql and rassoc
Syntax:

(rassqg value alist)
(rassqgl value alist)
(rassoc value alist)

Utility Commands 2021-07-12 203

TXR(1) TXR Programming Language TXR(1)

Description:

The rassq, rassqgl and rassoc functions are reverse lookup counterparts to assgl and
assoc. When searching, they examine the cdr field of the pairs of alist rather than the car
field.

The rassoc function searches association list alist for a cons whose cdr field equivalent to
value according to the equal function. If such a cons is found, it is returned. Otherwise nil is
returned.

The rassqg and rassqgl functions search in the same way as rassoc but compares values
using, respectively, eq and eql.

9.11.4 Function acons
Syntax:

(acons car cdr alist)

Description:
The acons function constructs a new alist by consing a new cons to the front of alist. The fol-

lowing equivalence holds:

(acons car cdr alist) <--> (cons (cons car cdr) alist)

9.11.5 Function acons—new
Syntax:

(acons—new car cdr alist)

Description:

The acons-new function searches alist, as if using the assoc function, for an existing cell
which matches the key provided by the car argument. If such a cell exists, then its cdr field is
overwritten with the cdr argument, and then the alist is returned. If no such cell exists, then a
new list is returned by adding a new cell to the input list consisting of the car and cdr values, as
if by the acons function.

9.11.6 Function aconsgl-new
Syntax:

(aconsgl-new car cdr alist)

Description:

The aconsgl-new function has similar same parameters and semantics as acons-new, except
that the eql function is used for equality testing. Thus, the list is searched for an existing cell as if
using the assqgl function rather than assoc.

9.11.7 Function alist-remove
Syntax:

(alist-remove alist key...)

Description:

The alist-remove function takes association list alist and produces a duplicate from which
cells matching the specified keys have been removed. The keys argument is a list of the keys not

Utility Commands 2021-07-12 204

TXR(1) TXR Programming Language TXR(1)

to appear in the output list.

9.11.8 Function alist-nremove
Syntax:

(alist—-nremove alist key...)

Description:

The alist-nremove function is like alist-remove, but potentially destructive. The input
list alist may be destroyed and its structural material reused to form the output list. The applica-
tion should not retain references to the input list.

9.11.9 Function copy-alist
Syntax:

(copy-alist alist)
Description:

The copy—-alist function duplicates alist. Unlike copy—1ist, which only duplicates list
structure, copy—alist also duplicates each cons cell of the input alist. That is to say, each ele-
ment of the output list is produced as if by the copy—cons function applied to the corresponding
element of the input list.

9.12 Property Lists

A property list, also referred to as a plist, is a flat list of even length consisting of interleaved pairs of prop-
erty names (usually symbols) and their values (arbitrary objects). An example property list is (:a 1 :b "two")
which contains two properties, :a having value 1, and :b having value "two".

An improper plist represents Boolean properties in a condensed way, as property indicators which are not
followed by a value. Such properties only indicate their presence or absence, which is useful for encoding a
Boolean value. If it is absent, then the property is false. Correctly using an improper plist requires that the
exact set of Boolean keys is established by convention.

In this document, the unqualified terms property list and plist refer strictly to an ordinary plist, not to an
improper plist.

Dialect Note:

Unlike in some other Lisp dialects, including ANSI Common Lisp, symbols do not have property
lists in TXR Lisp. Improper plists aren’t a concept in ANSI CL.

9.12.1 Function prop
Syntax:

(prop plist key)
Description:
The prop function searches property list p1ist for key key. If the key is found, then the value

next to it is returned. Otherwise nil is returned.

It is ambiguous whether nil is returned due to the property not being found, or due to the prop-
erty being present with a nil value.

Utility Commands 2021-07-12 205

TXR(1) TXR Programming Language TXR(1)

The indicators in p1ist are compared with key using eq equality, allowing them to be symbols,
characters or fixnum integers.

9.12.2 Function memp
Syntax:
(memp key plist)
Description:
The memp function searches property list p11ist for key key, using eq equality.

If the key is found, then the entire suffix of p1ist beginning with the indicator is returned, such
that the first element of the returned list is key and the second element is the property value.

Note the reversed argument convention relative to the prop function, harmonizing with functions
in the member family.

9.12.3 Functions plist-to-alist and improper—-plist-to—-alist
Syntax:

(plist-to—-alist plist)
(improper-plist-to-alist imp-plist bool-keys)

Description:
The functions plist-to-alist and improper-plist-to—-alist convert, respectively, a

property list and improper property list to an association list.

The plist-to-alist function scans plist and returns the indicator-property pairs as a list
of cons cells, such that each car is the indicator, and each cdr is the value.

The improper-plist-to-alist is similar, except that it handles the Boolean properties

which, by convention, aren’t followed by a value. The list of all such indicators is specified by the
bool-keys argument.

Examples:

(plist-to-alist "(a 1 b 2)) --> ((a . 1) (b . 2))

(improper-plist-to-alist ’ (:x 1 :blue :y 2) '’ (:blue))
-=> ((:x . 1) (:blue) (:y . 2))

9.13 List Sorting

Note: these functions operate on lists. The principal sorting function in TXR Lisp is sort, described
under Sequence Manipulation.

The merge function described here provides access to an elementary step of the algorithm used internally
by sort when operating on lists.

The multi-sort operation sorts multiple lists in parallel. It is implemented using sort.

Utility Commands 2021-07-12 206

TXR(1)

TXR Programming Language TXR(1)

9.13.1 Function merge

Syntax:

(merge seql seq2 [lessfun [keyfun]])

Description:

The merge function merges two sorted sequences segl and seqg2 into a single sorted sequence.
The semantics and defaulting behavior of the Iessfun and keyfun arguments are the same as
those of the sort function.

The sequence which is returned is of the same kind as seql.

This function is destructive of any inputs that are lists. If the output is a list, it is formed out of the
structure of the input lists.

9.13.2 Function multi-sort

Syntax:

(multi-sort columns less-funcs [key—-funcs])

Description:

The multi-sort function regards a list of lists to be the columns of a database. The correspond-
ing elements from each list constitute a record. These records are to be sorted, producing a new
list of lists.

The columns argument supplies the list of lists which comprise the columns of the database. The
lists should ideally be of the same length. If the lists are of different lengths, then the shortest list
is taken to be the length of the database. Excess elements in the longer lists are ignored, and do not
appear in the sorted output.

The less-funcs argument supplies a list of comparison functions which are applied to the col-
umns. Successive functions correspond to successive columns. If 1ess~-funcs is an empty list,
then the sorted database will emerge in the original order. If 1ess—funcs contains exactly one
function, then the rows of the database is sorted according to the first column. The remaining col-
umns simply follow their row. If Iess—funcs contains more than one function, then additional
columns are taken into consideration if the items in the previous columns compare equal. For
instance if two elements from column one compare equal, then the corresponding second col-
umn elements are compared using the second column comparison function. The Iess-funcs
argument may be a function object, in which case it is treated as if it were a one-element list con-
taining that function object.

The optional key-funcs argument supplies transformation functions through which column
entries are converted to comparison keys, similarly to the single key function used in the sort func-
tion and others. If there are more key functions than less functions, the excess key functions are
ignored.

9.14 Lazy Lists and Lazy Evaluation

9.14.1 Function make-lazy—-cons

Syntax:

(make-lazy-cons function [car [cdr]ll])

Utility Commands 2021-07-12 207

TXR(1) TXR Programming Language TXR(1)

Description:

The function make-lazy-cons makes a special kind of cons cell called a lazy cons, whose type
is 1cons. Lazy conses are useful for implementing lazy lists.

Lazy lists are lists which are not allocated all at once. Rather, the elements of its structure materi-
alize just before they are accessed.

A lazy cons has car and cdr fields like a regular cons, and those fields are initialized to the val-
ues of the car and cdr arguments of make-lazy-cons when the lazy cons is created. These
arguments default to nil if omitted. A lazy cons also has an update function, which is specified
by the function argument to make-lazy-cons.

The function argument must be a function that may be called with exactly one parameter.

When either the car and cdr fields of a cons are accessed for the first time to retrieve their value,
function is automatically invoked first, and is given the lazy cons as a parameter. That function
has the opportunity to store new values into the car and cdr fields. Once the function is called, it
is removed from the lazy cons: the lazy cons no longer has an update function. If the update func-
tion itself attempts to retrieve the value of the lazy cons cell’s car or cdr field, it will be recur-
sively invoked.

The functions 1cons-car and lcons—cdr may be used to access the fields of a lazy cons
without triggering the update function.

Storing a value into either the car or cdr field does not have the effect of invoking the update
function.

If the function terminates by returning normally, the access to the value of the field then proceeds
in the ordinary manner, retrieving whatever value has most recently been stored.

The return value of the function is ignored.

To perpetuate the growth of a lazy list, the function can make another call to make-lazy-cons
and install the resulting cons as the cdr of the lazy cons.

Example:

;77 lazy list of integers between min and max
(defun integer-range (min max)
(let ((counter min))
;; min is greater than max; Jjust return empty list,
;7 otherwise return a lazy list
(if (> min max)
nil
(make—-lazy—-cons
(lambda (lcons)
;7 install next number into car
(rplaca lcons counter)
;; now deal wit cdr field
(cond
;; max reached, terminate list with nil!
((egql counter max)
(rplacd lcons nil))
;; max not reached: increment counter

Utility Commands 2021-07-12 208

TXR(1) TXR Programming Language TXR(1)

;7 and extend with another lazy cons

(inc counter)
(rplacd lcons
(make—-lazy-cons
(lcons—fun lcons))))))))))

9.14.2 Function 1consp
Syntax:

(lconsp value)
Description:

The lconsp function returns t if value is a lazy cons cell. Otherwise it returns nil, even if
value is an ordinary cons cell.

9.14.3 Function 1cons-fun
Syntax:

(lcons—fun lazy-cons)
Description:

The 1cons-fun function retrieves the update function of a lazy cons. Once a lazy cons has been
accessed, it no longer has an update function and 1cons-fun returns nil. While the update
function of a lazy cons is executing, it is still accessible. This allows the update function to retrieve
a reference to itself and propagate itself into another lazy cons (as in the example under make—
lazy-cons).

9.14.4 Functions 1cons-car and lcons-cdr
Syntax:

(lcons—car lazy-cons)
(lcons—cdr lazy-cons)

Description:
The functions 1cons—car and 1cons—cdr retrieve the car and cdr fields of lazy—-cons,

without triggering the invocation of its associated update function.

The lazy-cons argument must be an object of type 1cons. Unlike the functions car and
cdr, These functions cannot be applied to any other type of object.

Note: these functions may be used by the update function to retrieve the values which were stored
into lazy-cons by the make-lazy-cons constructor, without triggering recursion. The func-
tion may then overwrite either or both of these values. This allows the fields of the lazy cons to
store state information necessary for the propagation of a lazy list. If that state information con-
sists of no more than two values, then no additional context object need be allocated.

9.14.5 Macro 1cons
Syntax:

(lcons car-expression cdr—expression)

Utility Commands 2021-07-12 209

TXR(1) TXR Programming Language TXR(1)

Description:

The 1cons macro simplifies the construction of structures based on lazy conses. Syntactically, it
resembles the cons function. However, the arguments are expressions rather than values. The
macro generates code which, when evaluated, immediately produces a lazy cons. The expressions
car-expression and cdr-expression are not immediately evaluated. Rather, when either
the car or cdr field of the lazy cons cell is accessed, these expressions are both evaluated at that
time, in the order that they appear in the 1cons expression, and in the original lexical scope in
which that expression was evaluated. The return values of these expressions are used, respectively,
to initialize the corresponding fields of the lazy cons.

Note: the 1cons macro may be understood in terms of the following reference implementation, as
a syntactic sugar combining the make—-lazy-cons constructor with a lexical closure provided
by a lambda function:

(defmacro lcons (car—-form cdr—-form)
(let ((lc (gensym)))
" (make-lazy-cons (lambda (,lc)
(rplaca ,1lc ,car—form)
(rplacd ,1lc ,cdr—form)))))

Example:
;7 Given the following function

(defun fib-generator (a b)
(lcons a (fib-generator b (+ a b))))

;i ... the following function call generates the Fibonacci
;7 sequence as an infinite lazy list.

(fib-generator 1 1) -> (1 1 2 3 5 8 13 ...)

9.14.6 Functions lazy-stream-cons and get-lines
Syntax:

(lazy—-stream—-cons stream)
(get-lines [stream])

Description:

The lazy-stream-cons and get-1lines functions are synonyms, except that the st ream
argument is optional in get-1ines and defaults to *stdin*. Thus, the following description
of lazy—-stream-cons also applies to get-1lines.

The lazy-stream-cons returns a lazy cons which generates a lazy list based on reading lines
of text from input stream st ream, which form the elements of the list. The get-1ine function
is called on demand to add elements to the list.

The lazy-stream-cons function itself makes the first call to get—1ine on the stream. If this
returns nil, then the stream is closed and nil is returned. Otherwise, a lazy cons is returned
whose update function will install that line into the car field of the lazy cons, and continue the
lazy list by making another call to lazy-stream-cons, installing the result into the cdr field.

lazy-stream—-cons inspects the real-time property of a stream as if by the real-time-
stream-p function. This determines which of two styles of lazy list are returned. For an ordinary

Utility Commands 2021-07-12 210

TXR(1) TXR Programming Language

TXR(1)

(non-real-time) stream, the lazy list treats the end-of-file condition accurately: an empty file turns
into the empty list ni1, a one line file into a one-element list which contains that line and so on.
This accuracy requires one line of lookahead which is not acceptable in real-time streams, and so a
different type of lazy list is used, which generates an extra nil item after the last line. Under this
type of lazy list, an empty input stream translates to the list (nil) ; a one-line stream translates to

("line" nil) and so forth.

9.14.7 Macro delay
Syntax:

(delay expression)

Description:

The delay operator arranges for the delayed (or "lazy") evaluation of expression. This means
that the expression is not evaluated immediately. Rather, the delay expression produces a promise

object.

The promise object can later be passed to the force function (described later in this document).

The force function will trigger the evaluation of the expression and retrieve the value.

The expression is evaluated in the original scope, no matter where the force takes place.

The expression is evaluated at most once, by the first call to force. Additional calls to force

only retrieve a cached value.

Example:

;7 list is popped only once:
;7 Just once when force is called on a given promise

;; for the first time.

(defun get-it (promise)
(format t "*list* is “s\n" *list*)

(format t "item is
(format t "item is
(

“s\n" (force promise))
“s\n" (force promise))

format t "*list* is “s\n" *list*))

(defvar *list* (1 2 3))

(get—-it (delay (pop *1list*)))

Output:

list is (1 2 3)
item is 1

item is 1

list is (2 3)

9.14.8 Accessor force
Syntax:

(force promise)

(set (force promise)

Utility Commands

new—-value)

2021-07-12

the value is computed

211

TXR(1) TXR Programming Language TXR(1)

Description:

The force function accepts a promise object produced by the delay macro. The first time
force is invoked, the expression which was wrapped inside promise by the delay macro
is evaluated (in its original lexical environment, regardless of where in the program the force
call takes place). The value of expression is cached inside promise and returned, becoming
the return value of the force function call. If the force function is invoked additional times on
the same promise, the cached value is retrieved.

A force form is a syntactic place, denoting the value cache location within promise.
Storing a value in a force place causes future accesses to the promise to return that value.

If the promise had not yet been forced, then storing a value into it prevents that from ever happen-
ing. The delayed expression will never be evaluated.

If, while a promise is being forced, the evaluation of expression itself causes an assignment to
the promise, it is not specified whether the promise will take on the value of expression or the
assigned value.

9.14.9 Function promisep
Syntax:
(promisep object)
Description:
The promisep function returns t if object is a promise object: an object created by the

delay macro. Otherwise it returns nil.

Note: promise objects are conses. The t ypeof function applied to a promise returns cons.

9.14.10 Macro mlet
Syntax:
(mlet ({sym | (sym init—form)}*) body—-form*)
Description:
The mlet macro ("magic let" or "mutual let") implements a variable binding construct similar to

let and let*.

Under mlet, the scope of the bindings of the sym variables extends over the init-forms, as
well as the body—-forms.

Unlike the 1et* construct, each init-form has each sym in scope. That is to say, an init—
form can refer not only to previous variables, but also to later variables as well as to its own vari-
able.

The variables are not initialized until their values are accessed for the first time. Any sym whose
value is not accessed is not initialized.

Furthermore, the evaluation of each init-form does not take place until the time when its value

is needed to initialize the associated sym. This evaluation takes place once. If a given sym is not
accessed during the evaluation of the mlet construct, then its init—formis never evaluated.

Utility Commands 2021-07-12 212

TXR(1)

TXR Programming Language TXR(1)

The bound variables may be assigned. If, before initialization, a variable is updated in such a way
that its prior value is not needed, it is unspecified whether initialization takes place, and thus
whether its 1nit-formis evaluated.

Direct circular references are erroneous and are diagnosed. This takes place when the macro-
expanded form is evaluated, not during the expansion of mlet.

Examples:

;7 Dependent calculations in arbitrary order
(mlet ((x (+ y 3))
(z (+ x 1))
(y 4))
(+ z 4)) -—> 12

;; Error: circular reference:
;; x depends on y, y on z, but z on x again.
(mlet ((x (+ y 1))
(y (+ z 1))
(z (+ x 1)))
z)

;7 Okay: lazy circular reference because lcons is used
(mlet ((list (lcons 1 1list)))
list) ——> (11111 ...) ;; circular list

In the last example, the 1ist variable is accessed for the first time in the body of the m1et form.
This causes the evaluation of the 1cons form. This form evaluates its arguments lazily, which
means that it is not a problem that 1ist is not yet initialized. The form produces a lazy cons,
which is then used to initialize 1ist . When the car or cdr fields of the lazy cons are accessed,
the 1ist expression in the 1cons argument is accessed. By that time, the variable is initialized
and holds the lazy cons itself, which creates the circular reference, and a circular list.

9.14.11 Functions generate,giterate and ginterate

Syntax:
(generate while-fun gen-fun)
(giterate while-fun gen—fun [value])
(ginterate while—fun gen—-fun [valuel)
Description:

The generate function produces a lazy list which dynamically produces items according to the
following logic.

The arguments to generate are functions which do not take any arguments. The return value of
generate is a lazy list.

When the lazy list is accessed, for instance with the functions car and cdr, it produces items on
demand. Prior to producing each item, while-fun is called. If it returns a true Boolean value
(any value other than nil), then the gen—fun function is called, and its return value is incorpo-
rated as the next item of the lazy list. But if while—-fun yields nil, then the lazy list immedi-
ately terminates.

Prior to returning the lazy list, generate invokes the while—fun one time. If while-fun yields

Utility Commands 2021-07-12 213

TXR(1)

TXR Programming Language TXR(1)

nil, then generate returns the empty list nil instead of a lazy list. Otherwise, it instantiates a
lazy list, and invokes the gen—fun to populate it with the first item.

The giterate function is similar to generate, except that while—fun and gen—-fun are
functions of one argument rather than functions of no arguments. The optional value argument
defaults to nil and is threaded through the function calls. That is to say, the lazy list returned is
(value [gen—-fun value]l [gen—-fun [gen—-fun valuel]l ...).

The lazy list terminates when a value fails to satisfy while—fun. Thatis to say, prior to generat-
ing each value, the lazy list tests the value using while-fun. If that function returns nil, then
the item is not added, and the sequence terminates.

Note: giterate could be written in terms of generate like this:

(defun giterate (w g v)
(generate (lambda () [w Vv])
(lambda () (progl v (set v [g Vv])))))

The ginterate function is a variant of giterate which includes the test-failing item in the
generated sequence. That is to say ginterate generates the next value and adds it to the lazy
list. The value is then tested using while-fun. If that function returns nil, then the list is ter-
minated, and no more items are produced.

Example:

(giterate (op > 5) (op + 1) 0) -> (0 1 2 3 4)
(ginterate (op > 5) (op + 1) 0) -> (0 1 2 3 4 5)

9.14.12 Function expand-right
Syntax:
(expand-right gen-fun value)
Description:
The expand-right function is a complement to reduce-right, with lazy semantics.

The gen—fun parameter is a function, which must accept a single argument, and return either a
cons pairor nil.

The value parameter is any value.
The first call to gen—fun receives value.
The return value is interpreted as follows. If gen—fun returns a cons-cell pair (elem . next)

then elem specifies the element to be added to the lazy list, and next specifies the value to be
passed to the next call to gen—fun. If gen—fun returns nil then the lazy list ends.

Examples:
;7 Count down from 5 to 1 using explicit lambda

;7 for gen—-fun:

(expand-right
(lambda (item)

Utility Commands 2021-07-12 214

TXR(1) TXR Programming Language TXR(1)

(if (zerop item) nil
(cons item (pred item))))
5)
-—> (543 2 1)

;7 Using functional combinators:
[expand-right [iff zerop nilf [callf cons identity pred]] 5]
--> (5 4 32 1)

;7 Include zero:
[expand-right
[iff null
nilf
[callf cons identity [iff zerop nilf pred]]] 5]
-—> (5432 10)

9.14.13 Functions expand-left and nexpand-left
Syntax:

(expand-left gen—-fun value)
(nexpand-left gen-fun value)

Description:

The expand-1left function is a companion to expand-right.

Unlike expand-right, it has eager semantics: it calls gen—fun repeatedly and accumulates an
output list, not returning until gen-fun returns nil.

The semantics is as follows. expand-1left initializes an empty accumulation list. Then gen-
fun is called, with value as its argument.

If gen—fun it returns a cons cell, then the car of that cons cell is pushed onto the accumulation
list, and the procedure is repeated: gen—fun is called again, with cdr taking the place of
value.

If gen—fun returns nil, then the accumulation list is returned.

If the expression (expand-right £ wv) produces a terminating list, then the following equiva-
lence holds:

(expand-left f v) <--> (reverse (expand-right f v))
The equivalence cannot hold for arguments to expand-1left which produce an infinite list.
The nexpand-1left function is a destructive version of expand-left.

The list returned by nexpand-left is composed of the cons cells returned by gen-fun
whereas the list returned by expand-1left is composed of freshly allocated cons cells.

9.14.14 Function repeat
Syntax:

(repeat 1ist [count])

Utility Commands 2021-07-12 215

TXR(1) TXR Programming Language TXR(1)

Description:
If 1ist is empty, then repeat returns an empty list.

If count is omitted, the repeat function produces an infinite lazy list formed by catenating
together copies of 1ist.

If count is specified and is zero or negative, then an empty list is returned.

Otherwise a list is returned consisting of count repetitions of 11ist catenated together.

9.14.15 Function pad
Syntax:
(pad sequence object [count])
Description:
The pad function produces a lazy list which consists of all of the elements of sequence fol-

lowed by repetitions of ob ject.

If count is omitted, then the repetition of object is infinite. Otherwise the specified number of
repetitions occur.

Note that sequence may be a lazy list which is infinite. In that case, the repetitions of object
will never occur.

9.14.16 Function weave

Syntax:
(weave {sequence}?*)

Description:
The weave function interleaves elements from the sequences given as arguments.
If called with no arguments, it returns the empty list.
If called with a single sequence, it returns the elements of that sequence as a new lazy list.
When called with two or more sequences, weave returns a lazy list which draws elements from
the sequences in a round-robin fashion, repeatedly scanning the sequences from left to right, and
taking an item from each one, removing it from the sequence. Whenever a sequence runs out of
items, it is deleted; the weaving then continues with the remaining sequences. The weaved
sequence terminates when all sequences are eliminated. (If at least one of the sequences is an infi-
nite lazy list, then the weaved sequence is infinite.)

Examples:

;7 Weave negative integers with positive ones:
(weave (range 1) (range -1 : -1)) -> (1 -1 2 -2 3 -3 ...)

(weave "abcd" (range 1 3) "(x X X X X X X))
——> (#\a 1 x #\b 2 x #\c 3 x #\d x x x Xx)

Utility Commands 2021-07-12 216

TXR(1) TXR Programming Language TXR(1)

9.14.17 Macros gen and gun
Syntax:

(gen while-expression produce-item—-expression)
(gun produce-item—-expression)

Description:

The gen macro operator produces a lazy list, in a manner similar to the generate function.
Whereas the generate function takes functional arguments, the gen operator takes two expres-
sions, which is often more convenient.

The return value of gen is a lazy list. When the lazy list is accessed, for instance with the func-
tions car and cdr, it produces items on demand. Prior to producing each item, the while—
expression is evaluated, in its original lexical scope. If the expression yields a non-nil value,
then produce-item-expression is evaluated, and its return value is incorporated as the
next item of the lazy list. If the expression yields ni1, then the lazy list immediately terminates.

The gen operator itself immediately evaluates while-expression before producing the lazy
list. If the expression yields nil, then the operator returns the empty list nil. Otherwise, it
instantiates the lazy list and invokes the produce-item-expression to force the first item.

The gun macro similarly creates a lazy list according to the following rules. Each successive item
of the lazy list is obtained as a result of evaluating produce-item-expression. However,
when produce-item—-expression yields nil, then the list terminates (without adding that
nil as an item).

Note 1: the form gun can be implemented as a macro-expanding to an instance of the gen opera-
tor, like this:

(defmacro gun (expr)
(let ((var (gensym)))
“(let (,var)
(gen (set ,var ,expr)
,var))))

This exploits the fact that the set operator returns the value that is assigned, so the set expression
is tested as a condition by gen, while having the side effect of storing the next item temporarily in
a hidden variable.

In turn, gen can be implemented as a macro expanding to some lambda functions which are
passed to the generate function:

(defmacro gen (while-expr produce-expr)
" (generate (lambda () ,while—expr)
(lambda () ,produce-expr)))

Note 2: gen can be considered as an acronym for Generate, testing Expression before Next item,
whereas gun stands for Generate Until Null.

Example:

;; Make a lazy list of integers up to 1000
;; access and print the first three.
(let* ((counter 0)
(list (gen (< counter 1000) (inc counter))))

Utility Commands 2021-07-12 217

TXR(1) TXR Programming Language TXR(1)

(format t ""s "s “s\n" (pop list) (pop list) (pop list)))

Output:
123

9.14.18 Functions range and range*
Syntax:

(range [from [to [stepll])
(range* [from [to [steplll)

Description:

The range and range* functions generate a lazy sequence of integers, with a fixed step
between successive values.

The difference between range and range* is that range* excludes the endpoint. For instance
(range 0 3) generatesthelist (0 1 2 3), whereas (range* 0 3) generates (0 1 2).

All arguments are optional. If the step argument is omitted, then it defaults to 1: each value in
the sequence is greater than the previous one by 1. Positive or negative step sizes are allowed.
There is no check for a step size of zero, or for a step direction which cannot meet the endpoint.

The to argument specifies the endpoint value, which, if it occurs in the sequence, is excluded
from it by the range* function, but included by the range function. If to is missing, or specified
as nil, then there is no endpoint, and the sequence which is generated is infinite, regardless of
step.

If from is omitted, then the sequence begins at zero, otherwise from must be an integer which
specifies the initial value.

The sequence stops if it reaches the endpoint value (which is included in the case of range, and
excluded in the case of range®). However, a sequence with a stepsize greater than 1 or less than
-1 might step over the endpoint value, and therefore never attain it. In this situation, the sequence
also stops, and the excess value which surpasses the endpoint is excluded from the sequence.

9.14.19 Functions r1ist and r1ist*
Syntax:

(rlist item*)
(rlist* item¥*)
Description:
The r1ist ("range list") function is useful for producing a list consisting of a mixture of discon-

tinuous numeric or character ranges and individual items.

The function returns a lazy list of elements. The items are produced by converting the function’s
successive 1tem arguments into lists, which are lazily catenated together to form the output list.

Each itemis transformed into a list as follows. Any item which is not a range object is trivially
turned into a one-element list as if by the (1ist item*) expression.

Any item which is a range object, whose to field isn’t a range is turned into a lazy list as if by

evaluating the (range (from item) (to item)) expression. Thus for instance the argu-
ment 1. .10 turns into the (lazy) list (L 2 3 4 5 6 7 8 9 10).

Utility Commands 2021-07-12 218

TXR(1)

TXR Programming Language TXR(1)

Any item which is a range object such that its t o field is also a range is turned into a lazy list as if
by evaluating the (range (from item) (from (to item)) (to (to item)))
expression. Thus for instance the argument expression 1..10..2 produces an item which
rlist turns into the lazy list (1 3 5 7 9) asif by the call (range 1 10 2). Note that
the expression 1. .10. .2 stands for the expression (rcons 1 (rcons 10 2)) which eval-
uates to #R (1 #R (10 2)).

The #R (1 #R (10 2)) range literal syntax can be passed as an argument to r1ist with the
sameresultas 1..10..2.

The rlist* function differs from r1ist in one regard: under r1ist*, the ranges denoted by
the range notation exclude the endpoint. That is, the ranges are generated as if by the range*
function rather than range.

Note: it is permissible for item objects to specify infinite ranges. It is also permissible to apply
rlist to an infinite argument list.

Examples:
(rlist 1 "two" :three) -> (1 "two" :three)
(rlist 10 15..16 #\a..#\d 2) -> (10 15 16 #\a #\b #\c #\d 2)
(take 7 (rlist 1 2 5..:)) -> (1 2 56 7 8 9)
9.15 Ranges

Ranges are objects that aggregate two values, not unlike cons cells. However, they are atoms, and are pri-
marily intended to hold numeric or character values in their two fields. These fields are called from and to
which are the names of the functions which access them. These fields are not mutable; a new value cannot
be stored into either field of a range.

The printed notation for a range object consists of the prefix #R (hash R) followed by the two values
expressed as a two-element list. Ranges can be constructed using the rcons function. The notation x. .y

corresponds to (rcons x y).

Ranges behave as a numeric type and support a subset of the numeric operations. Two ranges can be added
or subtracted, which obeys these equivalences:

(+ a..b c..d) <—=> (+ ac)..(+ b d
(- a..b c..d) <—=> (—-ac)..(— b d

A range a. .b can be combined with a character or number n using addition or subtractions, which obeys
these equivalences:

(+ a..b n) <-—> (+n a..b) <> (+an)..(+ b n)
(- a..bn) <-—> (- amn)..(-— b n)
(- na..b) <> (-na)..(-n b)

A range can be multiplied by a number:

(* a..b n) <—=> (* n a..b) <—=> (*an)..(* b n)

A range can be divided by a number using the / or t runc functions, but a number cannot be divided by a
range:

(trunc a..b n) <—=> (trunc a n).. (trunc b n)

Utility Commands 2021-07-12 219

TXR(1) TXR Programming Language TXR(1)

(/ a..b n) <--> (/ an)..(/ b n)

Ranges can be compared using the equality and inequality functions =, <, >, <= and >=. Equality obeys
this equivalence:

(= a..bc..d) <-—> (and (= a c) (= b d))
Inequality comparisons treat the from component with precedence over to such that only if the from

components of the two ranges are not equal under the = function, then the inequality is based solely on
them. If they are equal, then the inequality is based on the t o components. This gives rise to the following

equivalences:
(< a..b c..d) <==> (if (= ac) (Kb d (< ac))
(> a..b c..qd) <==> (1f (= ac) (>b d (> ac))
(>= a..b c..d) <==> (1if (= a c) (>=b d) (> a c))
(<= a..b c..d) <==> (1f (= a ¢c) (<=b d) (< a c))

Ranges can be negated with the one-argument form of the — function, which is equivalent to subtraction
from zero: the negation distributes over the two range components.

The abs function also applies to ranges and distributes into their components.
The succ and pred family of functions also operate on ranges.
The length of a range may be obtained with the 1ength function;

The length of the range a. .b is defined as (- b a), and may be obtained using the 1ength function.
The empty function accepts ranges and tests them for zero length.

9.15.1 Function rcons
Syntax:
(rcons from to)
Description:
The rcons function constructs a range object which holds the values fromand to.

Though range objects are effectively binary cells like conses, they are atoms. They also aren’t
considered sequences, nor are they structures.

Range objects are used for indicating numeric ranges, such as substrings of lists, arrays and
strings. The dotdot notation serves as a syntactic sugar for rcons. The syntax a. .b denotes the
expression (rcons a b).

Note that ranges are immutable, meaning that it is not possible to replace the values in a range.

9.15.2 Function rangep
Syntax:

(rangep value)
Description:

The rangep function returns t if value is a range. Otherwise it returns nil.

Utility Commands 2021-07-12 220

TXR(1) TXR Programming Language TXR(1)

9.15.3 Functions from and to
Syntax:

(from range)
(to range)

Description:

The from and to functions retrieve, respectively, the from and to fields of a range.

Note that these functions are not accessors, which is because ranges are immutable.

9.15.4 Functions in-range and in-range*
Syntax:

(in-range range value)
(in-range* range value)

Description:

The in-range and in-range* functions test whether the value argument lies in the range
represented by the range argument, indicating the Boolean result using one of the values t or
nil.

The range argument must be a range object.

It is expected that the range object’s £rom value does not exceed the t o value; a reversed range is
considered empty.

The in-range* function differs from in-range in that it excludes the upper endpoint.

The implicit comparison against the range endpoints is performed using the less and lequal
functions, as appropriate.

The following equivalences hold:

(in-range r x) <—=> (and (lequal (from r) x)
(lequal x (to r)))

(in-range* r x) <—=> (and (lequal (from r) x)
(less x (to r)))
9.16 Characters and Strings

9.16.1 Function mkstring
Syntax:

(mkstring length [char])
Description:

The mkstring function constructs a string object of a length specified by the Iength parame-

ter. Every position in the string is initialized with char, which must be a character value.

If the optional argument char is not specified, it defaults to the space character.

Utility Commands 2021-07-12 221

TXR(1) TXR Programming Language TXR(1)

9.16.2 Function copy-str
Syntax:
(copy—-str string)
Description:
The copy-str function constructs a new string whose contents are identical to st ring.
If stringis alazy string, then a lazy string is constructed with the same attributes as string.
The new lazy string has its own copy of the prefix portion of st ring which has been forced so

far. The unforced list and separator string are shared between string and the newly constructed
lazy string.

9.16.3 Function upcase-str
Syntax:

(upcase-str string)
Description:

The upcase-str function produces a copy of string such that all lowercase characters of the
English alphabet are mapped to their uppercase counterparts.

9.16.4 Function downcase-str
Syntax:

(downcase-str string)
Description:

The downcase-str function produces a copy of string such that all uppercase characters of
the English alphabet are mapped to their lowercase counterparts.

9.16.5 Function string-extend
Syntax:
(string-extend string tail)
Description:
The string-extend function destructively increases the length of string, which must be an

ordinary dynamic string. It is an error to invoke this function on a literal string or a lazy string.

The tail argument can be a character, string or integer. If it is a string or character, it specifies
material which is to be added to the end of the string: either a single character or a sequence of
characters. If it is an integer, it specifies the number of characters to be added to the string.

If tail is an integer, the newly added characters have indeterminate contents. The string appears
to be the original one because of an internal terminating null character remains in place, but the
characters beyond the terminating zero are indeterminate.

9.16.6 Function st ringp
Syntax:

(stringp obj)

Utility Commands 2021-07-12 222

TXR(1) TXR Programming Language TXR(1)

Description:

The st ringp function returns t if ob j is one of the several kinds of strings. Otherwise it returns
nil.

9.16.7 Function length-str
Syntax:

(length-str string)

Description:

The length-str function returns the length string in characters. The argument must be a
string.

9.16.8 Function coded-length
Syntax:

(coded-length string)
Description:
The coded-length function returns the number of bytes required to encode string in
UTF-8.

The argument must be a character string.

If the string contains only characters in the ASCII range U+0001 to U+007F range, then the value
returned shall be the same as that returned by the 1ength-st r function.

9.16.9 Function search-str
Syntax:

(search—-str haystack needle [start [from—-end]])

Description:

The search-str function finds an occurrence of the string needle inside the haystack
string and returns its position. If no such occurrence exists, it returns nil.

If a start argument is not specified, it defaults to zero. If it is a nonnegative integer, it specifies
the starting character position for the search. Negative values of start indicate positions from
the end of the string, such that —1 is the last character of the string.

If the from—end argument is specified and is not nil, it means that the search is conducted
right-to-left. If multiple matches are possible, it will find the rightmost one rather than the leftmost
one.

9.16.10 Function search-str-tree
Syntax:

(search-str-tree haystack tree [start [from—-end]])

Description:

The search-str-tree function is similar to search-str, except that instead of searching
haystack for the occurrence of a single needle string, it searches for the occurrence of numer-
ous strings at the same time. These search strings are specified, via the tree argument, as an

Utility Commands 2021-07-12 223

TXR(1)

TXR Programming Language TXR(1)

arbitrarily structured tree whose leaves are strings.

The function finds the earliest possible match, in the given search direction, from among all of the
needle strings.

If t ree is a single string, the semantics is equivalent to search-str.

9.16.11 Function match-str

(match-str bigstring littlestring [start])

Description:

Without the start argument, the match—-str function determines whether 1ittlestringis
aprefix of bigstring.

If the start argument is specified, and is a nonnegative integer, then the function tests whether
littlestring matches a prefix of that portion of bigstring which starts at the given posi-
tion.

If the start argument is a negative integer, then match-str determines whether 1it-
tlestringis a suffix of bigstring, ending on that position of bigstring, where —1 denotes
the last character of bigstring, —2 the second last one and so on.

If start is -1, then this corresponds to testing whether Iittlestring is a suffix of
bigstring.

The match-str function returns nil if there is no match.
If a prefix match is successful, then an integer value is returned indicating the position, inside
bigstring, one character past the matching prefix. If the entire string is matched, then this

value corresponds to the length of bigstring.

If a suffix match is successful, the return value is the position within bigstring where the left-
most character of 1ittlestring matched.

9.16.12 Function match-str-tree

(match-str-tree bigstring tree [start])

Description:

The match-str-tree function is a generalization of mat ch-str which matches multiple test
strings against bigstring at the same time. The value reported is the longest match from among
any of the strings.

The strings are specified as an arbitrarily shaped tree structure which has strings at the leaves.

If t ree is a single string atom, then the function behaves exactly like match-str.

9.16.13 Accessor sub—str

Utility Commands 2021-07-12 224

TXR(1) TXR Programming Language TXR(1)

(sub-str str [from [to]])
(set (sub-str str [from [to]]) new-value)

Description:
The sub-str function has the same parameters and semantics as the sub function, function,

except that the first argument is operated upon using string operations.

If a sub-str form is used as a place, it denotes a subrange of 1ist as if it were a storage loca-
tion. The previous value of this location, if needed, is fetched by a call to sub-str. Storing
new-value to the place is performed by a call to replace-str. In an update operation which
accesses the prior value and stores a new value, the arguments str, from, to and new-value
are evaluated once.

The str argument is not itself required to be a place; it is not updated when a value is written to
the sub-str storage location.

9.16.14 Function replace-str
Syntax:

(replace-str string item-sequence [from [tol])

Description:

The replace-str function has the same parameters and semantics as the replace function,
except that the first argument is operated upon using string operations.

9.16.15 Functions cat-str, join-with and join

Syntax:
(cat-str item-seqg [sep])
(join-with sep item*)
(join item*)

Description:

The cat-str, join-with and join functions combine items, into a single string, which is
returned.

Every item argument must be a character or string object. The same is true of the sep argument,
if present. The item-seq argument must be a sequence of any mixture of characters or strings.
Note that this means that if item—-seq is a character string, it is a valid argument, since it is a

sequence of characters.

If item-seq is empty, or no item arguments are present, then all three functions return an
empty string.

The cat-str function receives the items as a single list. If the sep argument is present, the
items are catenated together such that sep is interposed between them. If item-seq contains n
items, then n - I copies of sep occur in the resulting string.

If sepis absent, then cat—str catenates the items together directly, without any separator.

Copies of the items appear in the resulting string in the same order as the items appear in item—
seq.

The join-with function receives the items as arguments rather than a single item-seqg

Utility Commands 2021-07-12 225

TXR(1)

TXR Programming Language TXR(1)
arguments. The arguments are joined into a single character string in order, with sep interposed
between them.

The join function takes no sep argument. It joins all of its argument items into a single string, in
order.

9.16.16 Function split-str

Syntax:

(split-str string sep [keep-between])

Description:

The split-str function breaks the st ring into pieces, returning a list thereof. The sep argu-
ment must be one of three types: a string, a character or a regular expression. It determines the
separator character sequences within string.

All non-overlapping matches for sep within st ring are identified in left-to-right order, and are
removed from string. The string is broken into pieces according to the gaps left behind by the
removed separators, and a list of the remaining pieces is returned.

If sep is the empty string, then the separator pieces removed from the string are considered to be
the empty strings between its characters. In this case, if stringis of length one or zero, then it is
considered to have no such pieces, and a list of one element is returned containing the original
string. These remarks also apply to the situation when sep is a regular expression which matches
only an empty substring of string.

If a match for sep is not found in the string at all (not even an empty match), then the string is not
split at all: a list of one element is returned containing the original string.

If sep matches the entire string, then a list of two empty strings is returned, except in the case that
the original string is empty, in which case a list of one element is returned, containing the empty
string.

Whenever two adjacent matches for sep occur, they are considered separate cuts with an empty
piece between them.

This operation is nondestructive: st ring is not modified in any way.

If the optional keep-between argument is specified and is not ni1l, If an argument is given and
is true, then split-str incorporates the matching separating pieces of st ring into the result-
ing list, such that if the resulting list is catenated, a string equivalent to the original string will be
produced.

Note: to split a string into pieces of length one such that an empty string produces nil rather than
(""),usethe (tok-str string #/./) pattern.

Note: the function call (split-str s r t) produces a resulting list identical to (tok-str
s r t), for all values of r and s, provided that r does not match empty strings. If r matches
empty strings, then the tok—str call returns extra elements compared to split-str, because
tok-str allows empty matches to take place and extract empty tokens before the first character
of the string, and after the last character, whereas split-str does not recognize empty separa-
tors at these outer limits of the string.

Utility Commands 2021-07-12 226

TXR(1)

TXR Programming Language TXR(1)

9.16.17 Function spl

Syntax:

(spl sep [keep-between] string)

Description:

The spl function performs the same computation as split-str. The same-named parameters
of spl and split-str have the same semantics. The difference is the argument order. The
spl function takes the sep argument first. The last argument is always st ring whether or not
there are two arguments or three. If there are three arguments, then keep—between is the middle
one.

Note: the argument conventions of spl facilitate less verbose partial application, such as with
macros in the op family, in the common situation when st ringis the unbound argument.

9.16.18 Functions split-str-set and sspl

Syntax:

(split-str-set string set)
(sspl set string)

Description:

The split-str-set function breaks the st ring into pieces, returning a list thereof. The set
argument must be a string. It specifies a set of characters. All occurrences of any of these charac-
ters within string are identified, and are removed from string. The string is broken into
pieces according to the gaps left behind by the removed separators.

Adjacent occurrences of characters from set within st ring are considered to be separate gaps
which come between empty strings.

This operation is nondestructive: st ring is not modified in any way.

The sspl function performs the same operation; the only difference between sspl and split-
str-set is argument order.

9.16.19 Functions tok—-str and tok-where

Syntax:

(tok-str string regex [keep-between])
(tok-where string regex)

Description:

The tok—-str function searches st ring for tokens, which are defined as substrings of string
which match the regular expression regex in the longest possible way, and do not overlap. These
tokens are extracted from the string and returned as a list.

Whenever regex matches an empty string, then an empty token is returned, and the search for
another token within string resumes after advancing by one character position. However, if an
empty match occurs immediately after a nonempty token, that empty match is not turned into a
token.

So for instance, (tok—-str "abc" #/a?/) returns ("a" "" ""). After the token "a"
is extracted from a nonempty match for the regex, an empty match for the regex occurs just before
the character b. This match is discarded because it is an empty match which immediately follows

Utility Commands 2021-07-12 227

TXR(1)

TXR Programming Language TXR(1)

the nonempty match. The character b is skipped. The next match is an empty match between the b
and c characters. This match causes an empty token to be extracted. The character c is skipped,
and one more empty match occurs after that character and is extracted.

If the keep-between argument is specified, and is not nil, then the behavior of tok-str
changes in the following way. The pieces of string which are skipped by the search for tokens
are included in the output. If no token is found in string, then a list of one element is returned,
containing string. Generally, if N tokens are found, then the returned list consists of 2N + 1
elements. The first element of the list is the (possibly empty) substring which had to be skipped to
find the first token. Then the token follows. The next element is the next skipped substring and so
on. The last element is the substring of st ring between the last token and the end.

The tok-where function works similarly to tok—str, but instead of returning the extracted
tokens themselves, it returns a list of the character position ranges within st ring where matches
for regex occur. The ranges are pairs of numbers, represented as cons cells, where the first num-
ber of the pair gives the starting character position, and the second number is one position past the
end of the match. If a match is empty, then the two numbers are equal.

The tok-where function does not support the keep-between parameter.

9.16.20 Function tok

Syntax:

(tok regex [keep-between] string)

Description:

The tok function performs the same computation as tok—str. The same-named parameters of
tok and tok-str have the same semantics. The difference is the argument order. The tok
function takes the regex argument first. The last argument is always string whether or not
there are two arguments or three. If there are three arguments, then keep—between is the middle
one.

Note: the argument conventions of tok facilitate less verbose partial application, such as with
macros in the op family, in the common situation when st ringis the unbound argument.

9.16.21 Function 1ist-str

Syntax:

(list-str string)

Description:

The 1ist-str function converts a string into a list of characters.

9.16.22 Function trim-str

Syntax:

(trim-str string)

Description:

The trim-str function produces a copy of string from which leading and trailing tabs, spa-
ces and newlines are removed.

Utility Commands 2021-07-12 228

TXR(1) TXR Programming Language TXR(1)

9.16.23 Function chrp
Syntax:

(chrp obj)
Description:

Returns t if ob7j is a character, otherwise nil.

9.16.24 Function chr—-isalnum
Syntax:

(chr—isalnum char)
Description:

Returns t if char is an alphanumeric character, otherwise nil. Alphanumeric means one of the
uppercase or lowercase letters of the English alphabet found in ASCII, or an ASCII digit. This
function is not affected by locale.

9.16.25 Function chr-isalpha
Syntax:

(chr-isalpha char)
Description:

Returns t if char is an alphabetic character, otherwise nil. Alphabetic means one of the upper-
case or lowercase letters of the English alphabet found in ASCII. This function is not affected by
locale.

9.16.26 Function chr-isascii
Syntax:

(chr—isascii char)
Description:

The chr-isascii function returns t if the code of character char is in the range 0 to 127
inclusive. For characters outside of this range, it returns ni1l.

9.16.27 Function chr-iscntrl
Syntax:
(chr—iscntrl char)
Description:
The chr—iscntrl function returns t if the character char is a control character. For all other

character, it returns nil.

A control character is one which belongs to the Unicode CO or C1 block. CO consists of the the
characters U+0000 through U+001F, plus the character U+007F. These are the original ASCII
control characters. Block C1 consists of U+0080 through U+009F.

9.16.28 Functions chr-isdigit and chr-digit

Utility Commands 2021-07-12 229

TXR(1) TXR Programming Language TXR(1)

Syntax:

(chr-isdigit char)
(chr-digit char)

Description:

If char is is an ASCII decimal digit character, chr—-isdigit returns the value t and chr-
digit returns the integer value corresponding to that digit character, a value in the range O to 9.
Otherwise, both functions return nil.

9.16.29 Function chr-isgraph
Syntax:
(chr-isgraph char)
Description:
The chr-isgraph function returns t if char is a non-space printable ASCII character. It

returns nil if it is a space or control character.

It also returns nil for non-ASCII characters: Unicode characters with a code above 127.

9.16.30 Function chr-islower
Syntax:

(chr—islower char)
Description:

The chr-islower function returns t if char is an ASCII lowercase letter. Otherwise it returns
nil.

9.16.31 Function chr-isprint
Syntax:

(chr-isprint char)
Description:

The chr-isprint function returns t if char is an ASCII character which is not a control char-
acter. It also returns nil for all non-ASCII characters: Unicode characters with a code above 127.

9.16.32 Function chr-ispunct
Syntax:

(chr-ispunct char)
Description:

The chr—ispunct function returns t if char is an ASCII character which is not a control char-
acter. It also returns nil for all non-ASCII characters: Unicode characters with a code above 127.

9.16.33 Function chr-isspace
Syntax:

(chr-isspace char)

Utility Commands 2021-07-12 230

TXR(1) TXR Programming Language TXR(1)

Description:

The chr-isspace function returns t if char is an ASCII whitespace character: any of the
characters in the set #\space, #\tab, #\1linefeed, #\newline, #\return, #\vtab and
#\page. For all other characters, it returns nil.

9.16.34 Function chr-isblank
Syntax:

(chr—isblank char)

Description:

The chr-isblank function returns t if char is a space or tab: the character #\space or
#\tab. For all other characters, it returns nil.

9.16.35 Function chr-isunisp
Syntax:

(chr-isunisp char)
Description:

The chr-isunisp function returns t if char is a Unicode whitespace character. This the case
for all the characters for which chr—isspace returns t. It also returns t for these additional
characters: #\xa0, #\x1680, #\x180e, #\x2000, #\x2001, #\x2002, #\x2003,
#\x2004, #\x2005, #\x2006, #\x2007, #\x2008, #\x2009, #\x200a, #\x2028,
#\x2029, #\x205f, and #\x3000. For all other characters, it returns ni1l.

9.16.36 Function chr-isupper
Syntax:

(chr-isupper char)
Description:

The chr-isupper function returns t if char is an ASCII uppercase letter. Otherwise it returns
nil.

9.16.37 Functions chr-isxdigit and chr-xdigit
Syntax:

(chr-isxdigit char)
(chr-xdigit char)

Description:

If char is a hexadecimal digit character, chr—isxdigit returns the value t and chr-xdigit
returns the integer value corresponding to that digit character, a value in the range O to 15. Other-
wise, both functions returns nil.

A hexadecimal digit is one of the ASCII digit characters O through 9, or else one of the letters A
through F or their lowercase equivalents a through £ denoting the values 10 to 15.

9.16.38 Function chr-toupper

Syntax:

Utility Commands 2021-07-12 231

TXR(1) TXR Programming Language TXR(1)

(chr—-toupper char)
Description:

If character char is a lowercase ASCII letter character, this function returns the uppercase equiva-
lent character. If it is some other character, then it just returns char.

9.16.39 Function chr-tolower
Syntax:

(chr-tolower char)
Description:

If character char is an uppercase ASCII letter character, this function returns the lowercase
equivalent character. If it is some other character, then it just returns char.

9.16.40 Functions int-chr and chr-int
Syntax:

(int—-chr char)
(chr—int num)

Description:
The argument char must be a character. The num-chr function returns that character’s Unicode

code point value as an integer.

The argument num must be a fixnum integer in the range O to #\x10FFFF. The argument is
taken to be a Unicode code point value and the corresponding character object is returned.

Note: these functions are also known by the obsolescent names num-chr and chr—num.

9.16.41 Accessor chr—str
Syntax:

(chr—-str str idx)
(set (chr-str str idx) new-value)

Description:
The chr-str function performs random access on string str to retrieve the character whose

position is given by integer idx, which must be within range of the string.

The index value 0 corresponds to the first (leftmost) character of the string and so nonnegative val-
ues up to one less than the length are possible.

Negative index values are also allowed, such that -1 corresponds to the last (rightmost) character
of the string, and so negative values down to the additive inverse of the string length are possible.

An empty string cannot be indexed. A string of length one supports index 0 and index -1. A string
of length two is indexed left to right by the values 0 and 1, and from right to left by -1 and -2.

If the element idx of string str exists, and the string is modifiable, then the chr-str form
denotes a place.

A chr-str place supports deletion. When a deletion takes place, then the character at idx is
removed from the string. Any characters after that position move by one position to close the gap,

Utility Commands 2021-07-12 232

TXR(1)

Notes:

TXR Programming Language TXR(1)

and the length of the string decreases by one.

Direct use of chr—str is equivalent to the DWIM bracket notation except that str must be a
string. The following relation holds:

(chr-str s i) ——> [s 1i]
since [s i] <—--> (ref s i), this also holds:
(chr-str s i) --> (ref s 1)
However, note the following difference. When the expression [s 1] is used as a place, then the

subexpression s must be a place. When (chr-str s i) is used as a place, s need not be a
place.

9.16.42 Function chr-str-set

Syntax:

(chr—-str—-set str idx char)

Description:

Notes:

The chr-str function performs random access on string str to overwrite the character whose
position is given by integer idx, which must be within range of the string. The character at idx is
overwritten with character char.

The idx argument works exactly as in chr-str.

The st r argument must be a modifiable string.

Direct use of chr-str is equivalent to the DWIM bracket notation provided that st r is a string
and idx an integer. The following relation holds:

(chr-str-set s i c) —--> (set [s 1] c)
Since (set [s 1] c¢) <--> (refset s i c¢) foraninteger index i, this also holds:

(chr-str s i) ——-> (refset s 1 c)

9.16.43 Function span—-str

Syntax:

(span—-str str set)

Description:

The span-str function determines the longest prefix of string str which consists only of the
characters in string set, in any combination.

9.16.44 Function compl-span-str

Utility Commands 2021-07-12 233

TXR(1)

TXR Programming Language TXR(1)

Syntax:
(compl-span—-str str set)
Description:

The compl-span-str function determines the longest prefix of string st r which consists only
of the characters which do not appear in set, in any combination.

9.16.45 Function break-str
Syntax:
(break-str str set)
Description:
The break-str function returns an integer which represents the position of the first character in

string st r which appears in string set.

If there is no such character, then nil is returned.

9.17 Lazy Strings

Lazy strings are objects that were developed for the TXR pattern-matching language, and are exposed via
TXR Lisp. Lazy strings behave much like strings, and can be substituted for strings. However, unlike regu-
lar strings, which exist in their entirety, first to last character, from the moment they are created, lazy strings
do not exist all at once, but are created on demand. If character at index N of a lazy string is accessed, then
characters 0 through N of that string are forced into existence. However, characters at indices beyond N
need not necessarily exist.

A lazy string dynamically grows by acquiring new text from a list of strings which is attached to that lazy
string object. When the lazy string is accessed beyond the end of its hitherto materialized prefix, it takes
enough strings from the list in order to materialize the index. If the list doesn’t have enough material, then
the access fails, just like an access beyond the end of a regular string. A lazy string always takes whole
strings from the attached list.

Lazy string growth is achieved via the lazy-str-force-upto function which forces a string to exist
up to a given character position. This function is used internally to handle various situations.

The lazy-str—force function forces the entire string to materialize. If the string is connected to an
infinite lazy list, this will exhaust all memory.

Lazy strings are specially recognized in many of the regular string functions, which do the right thing with
lazy strings. For instance when sub-str is invoked on a lazy string, a special version of the sub-str
logic is used which handles various lazy string cases, and can potentially return another lazy string. Taking
a sub-str of a lazy string from a given character position to the end does not force the entire lazy string
to exist, and in fact the operation will work on a lazy string that is infinite.

Furthermore, special lazy string functions are provided which allow programs to be written carefully to take
better advantage of lazy strings. What carefully means is code that avoids unnecessarily forcing the lazy
string. For instance, in many situations it is necessary to obtain the length of a string, only to test it for
equality or inequality with some number. But it is not necessary to compute the length of a string in order to
know that it is greater than some value.

Utility Commands 2021-07-12 234

TXR(1)

TXR Programming Language TXR(1)

9.17.1 Function lazy-str

Syntax:

(lazy-str string-list [terminator [limit-count]])

Description:

The lazy-str function constructs a lazy string which draws material from string-Iist
which is a list of strings.

If the optional terminator argument is given, then it specifies a string which is appended to
every string from string-11ist, before that string is incorporated into the lazy string. If ter—
minator is not given, then it defaults to the string "\n", and so the strings from string-
1ist are effectively treated as lines which get terminated by newlines as they accumulate into the
growing prefix of the lazy string. To avoid the use of a terminator string, a null string termina-
tor argument must be explicitly passed. In that case, the lazy string grows simply by catenating
elements from string-1ist.

If the 1imit-count argument is specified, it must be a positive integer. It expresses a maxi-
mum limit on how many elements will be consumed from string-1ist in order to feed the
lazy string. Once that many elements are drawn, the string ends, even if the list has not been
exhausted.

9.17.2 Function lazy-stringp

Syntax:

(lazy-stringp obj)

Description:

The lazy-stringp function returns t if obj is a lazy string. Otherwise it returns nil.

9.17.3 Function lazy-str-force-upto

Syntax:

(lazy-str—-force-upto lazy-str index)

Description:

The lazy-str-force-upto function tries to instantiate the lazy string such that the position
given by index materializes. The index is a character position, exactly as used in the chr-str
function.

Some positions beyond index may also materialize, as a side effect.

If the string is already materialized through to at least index, or if it is possible to materialize the
string that far, then the value t is returned to indicate success.

If there is insufficient material to force the lazy string through to the index position, then nil is
returned.

It is an error if the 1azy—-str argument isn’t a lazy string.

9.17.4 Function lazy-str-force

Syntax:

(lazy—-str—-force lazy-str)

Utility Commands 2021-07-12 235

TXR(1)

TXR Programming Language TXR(1)

Description:

The 1azy-str argument must be a lazy string. The lazy string is forced to fully materialize.

The return value is an ordinary, non-lazy string equivalent to the fully materialized lazy string.

9.17.5 Function lazy-str—-get-trailing-list

Syntax:

(lazy-str—get-trailing-list string index)

Description:

The lazy-str—-get-trailing-1ist function can be considered, in some way, an inverse
operation to the production of the lazy string from its associated list.

First, string is forced up through the position index. That is the only extent to which
stringis modified by this function.

Next, the suffix of the materialized part of the lazy string starting at position index, is split into
pieces on occurrences of the terminator character (which had been given as the terminator
argument in the lazy-str constructor, and defaults to newline). If the index position is
beyond the part of the string which can be materialized (in adherence with the lazy string’s
limit-count constructor parameter), then the list of pieces is considered to be empty.

Finally, a list is returned consisting of the pieces produced by the split, to which is appended the
remaining list of the string which has not yet been forced to materialize.

9.17.6 Functions length-str—->, length-str->=, length-str-<and length-str—<=

Syntax:
(length-str-> string len)
(length-str->= string len)
(length-str—-< string len)
(length-str—-<= string len)
Description:

These functions compare the lengths of two strings. The following equivalences hold, as far as the
resulting value is concerned:

length-str-> s 1) <-—> (
length-str->= s 1) <--—>
length-str-< s 1) <-—> (
length-str-<= s 1) <--—>

(length-str s) 1)
= (length-str s) 1)
(length-str s) 1)
= (length-str s) 1)

(
(>
(
(

—~ A ~ V

<

The difference between the functions and the equivalent forms is that if the string is lazy, the
length-str function will fully force it in order to calculate and return its length.

These functions only force a string up to position Ien, so they are not only more efficient, but on
infinitely long lazy strings they are usable.

length-str cannot compute the length of a lazy string with an unbounded length; it will
exhaust all memory trying to force the string.

These functions can be used to test such as string whether it is longer or shorter than a given

Utility Commands 2021-07-12 236

TXR(1)

TXR Programming Language TXR(1)

length, without forcing the string beyond that length.

9.17.7 Function cmp-str

Syntax:

(cmp-str left-string right-string)

Description:

The cmp-str function returns -1 if left-string is lexicographically prior to right-
string. If the reverse relationship holds, it returns 1. Otherwise the strings are equal and zero is
returned.

If either or both of the strings are lazy, then they are only forced to the minimum extent necessary
for the function to reach a conclusion and return the appropriate value, since there is no need to
look beyond the first character position in which they differ.

The lexicographic ordering is naive, based on the character code point values in Unicode taken as
integers, without regard for locale-specific collation orders.

Note: in TXR 232 and earlier versions, cmp-str conforms to a weaker requirements: any nega-
tive integer value may be returned rather than -1, and any positive integer value can be returned
instead of 1.

9.17.8 Functions str=, str<, str>, str>=and str<=

Syntax:
(str= left-string right-string)
(str< left-string right-string)
(str> left-string right-string)
(str<= left-string right-string)
(str>= left-string right-string)
Description:

These functions compare left-string and right-string lexicographically, as if by the
cmp-str function.

The st r= function returns t if the two strings are exactly the same, character for character, other-
wise it returns nil.

The str< function returns t if left-string is lexicographically before right-string,
otherwise nil.

The str> function returns t if left-string is lexicographically after right-string, oth-
erwise nil.

The str< function returns t if Ieft-string is lexicographically before right-string, or
if they are exactly the same, otherwise nil.

The str< function returns t if left-stringis lexicographically after right-string, or if
they are exactly the same, otherwise nil.

Utility Commands 2021-07-12 237

TXR(1) TXR Programming Language TXR(1)

9.17.9 Function string-1t
Syntax:

(string-1t left-str right-str)
Description:

The string-1t is a deprecated alias for st r<.

9.18 Vectors
9.18.1 Function vector
Syntax:
(vector length [initval])
Description:

The vector function creates and returns a vector object of the specified length. The elements of
the vector are initialized to initval, or to nil if initval is omitted.

9.18.2 Function vec
Syntax:

(vec arg*)
Description:

The vec function creates a vector out of its arguments.

9.18.3 Function vectorp
Syntax:

(vectorp obj)
Description:

The vectorp function returns t if obj is a vector, otherwise it returns nil.

9.18.4 Function vec-set-length
Syntax:

(vec—set—-length vec len)
Description:

The vec-set-1length modifies the length of vec, making it longer or shorter. If the vector is
made longer, then the newly added elements are initialized to nil. The Ien argument must be non-
negative.

The return value is vec.
9.18.5 Accessor vecref

Syntax:

(vecref vec idx)
(set (vecref vec idx) new-value)

Utility Commands 2021-07-12 238

TXR(1) TXR Programming Language TXR(1)

Description:

The vecref function performs indexing into a vector. It retrieves an element of vec at position
idx, counted from zero. The idx value must range from O to one less than the length of the vec-
tor. The specified element is returned.

If the element idx of vector vec exists, then the vecref form denotes a place.

A vecref place supports deletion. When a deletion takes place, then if idx denotes the last ele-
ment in the vector, the vector’s length is decreased by one, so that the vector no longer has that
element. Otherwise, if 1 dx isn’t the last element, then each elements values at a higher index than
idx shifts by one one element position to the adjacent lower index. Then, the length of the vector
is decreased by one, so that the last element position disappears.

9.18.6 Function vec-push
Syntax:

(vec—push vec elem)
Description:
The vec—-push function extends the length of a vector vec by one element, and sets the new ele-

ment to the value elem.

The previous length of the vector (which is also the position of elem) is returned.

9.18.7 Function 1length-vec
Syntax:

(length-vec vec)

Description:

The 1length-vec function returns the length of vector vec. It performs similarly to the generic
length function, except that the argument must be a vector.

9.18.8 Function size-vec
Syntax:

(size-vec vec)

Description:

The size-vec function returns the number of elements for which storage is reserved in the vec-
tor vec.

Notes:

The length of the vector can be extended up to this size without any memory allocation opera-
tions having to be performed.

9.18.9 Function vec—-1ist
Syntax:

(vec—1list 1ist)

Utility Commands 2021-07-12 239

TXR(1) TXR Programming Language TXR(1)

Description:
The vec—-11ist function returns a vector which contains all of the same elements and in the same

order as list 11ist.

Note: this function is also known by the obsolescent name vector-1ist.

9.18.10 Function 1ist-vec
Syntax:

(list-vec vec)

Description:

The 1ist—-vec function returns a list of the elements of vector vec.

Note: this function is also known by the obsolescent name 1ist-vector.

9.18.11 Function copy-vec
Syntax:

(copy-vec vec)

Description:

The copy-vec function returns a new vector object of the same length as vec and containing
the same elements in the same order.

9.18.12 Accessor sub-vec
Syntax:

(sub-vec vec [from [to]l])
(set (sub-vec vec [from [to]]) new-value)

Description:
The sub-vec function has the same parameters and semantics as the function sub, except that

the vec argument must be a vector.

If a sub-vec form is used as a place, it denotes a subrange of 1ist as if it were a storage loca-
tion. The previous value of this location, if needed, is fetched by a call to sub-vec. Storing
new-value to the place is performed by a call to replace-vec. In an update operation which
accesses the prior value and stores a new value, the arguments vec, from, to and new-value
are evaluated once.

The vec argument is not itself required to be a place; it is not updated when a value is written to
the sub-vec storage location.

9.18.13 Function replace-vec
Syntax:

(replace-vec vec item-sequence [from [to]])

Description:

The replace-vec is like the replace function except that the vec argument must be a vec-
tor.

Utility Commands 2021-07-12 240

TXR(1) TXR Programming Language TXR(1)

9.18.14 Function fill-vec

Syntax:
(fill-vec-vec vec elem [from [to]])

Description:
The £i11-vec function overwrites a range of the vector with copies of the e1em value.
The from and to index arguments follow the same range indexing conventions as the replace
and sub functions. If from is omitted, it defaults to zero. If to is omitted, it defaults to the
length of vec. Negative values of from and to are adjusted by adding the length of the vector to
them, once.
If the adjusted value of either from or to is negative, or exceeds the length of vec, an error
exception is thrown.
The adjusted values of to and from specify a range of vec starting at the from index, and ending
at the to index, which is excluded from the range.
If the adjusted to is less than or equal to the adjusted from, then vec is unaltered.
Otherwise, copies of element are stored into vec starting at the from index, ending just before
the the to index is reached.
The £i11-vec function returns vec.

Examples:

(defvarl v (vec 1 2 3))

v —=> #(1 2 3)

(fill-vec v 0) ——=> #(0 0 0)
(fill-vec v 3 1) -—> #(0 3 3)
(fill-vec v 4 -1) ——> #(0 3 4)
(fill-vec v 5 -3 -1) -—> #(5 5 4)

9.18.15 Function cat-vec

Syntax:
(cat-vec vec-list)
Description:
The vec—-11ist argument is a list of vectors. The cat—vec function produces a catenation of the
vectors listed in vec—-1ist. It returns a single large vector formed by catenating those vectors
together in order.
9.19 Buffers

Utility Commands 2021-07-12 241

TXR(1) TXR Programming Language TXR(1)

9.19.1 The buf type

Object of the type buf are buffers: vector-like objects specialized for holding binary data represented as a
sequence of 8-bit bytes. Buffers support operations specialized toward the encoding of Lisp values into
machine-oriented data types, and decoding such data types into Lisp values.

Buffers are particularly useful in conjunction with the Foreign Function Interface (FFI), since they can be
used to prepare arbitrary data which can be passed into and out of a function by pointer. They are also use-
ful for binary I/O.

9.19.2 Conventions Used by the buf-put - Functions

Buffers support a number of similar functions for converting Lisp numeric values into common data types,
which are placed into the buffer. These functions are named starting with the buf-put - prefix, followed
by an abbreviated type name.

Each of these functions takes three arguments: buf specifies the buffer, pos specifies the byte offset posi-
tion into the buffer which receives the low-order byte of the data transfer, and val indicates the value.

If pos has a value such that any portion of the data transfer would like outside of the buffer, the buffer is
automatically extended in length to contain the data transfer. If this extension causes any padding bytes to
appear between the previous length of the buffer and pos, those bytes are initialized to zero.

The argument val giving the value to be stored must be an integer or character, except in the case of the
types float and double(the functions buf-put-float and buf-put-double) for which it is
required to be of type float, and in case of the function buf-put-cptr which expects the val argu-
ment to be a cptr object.

The val argument must be in range for the data type, or an exception results.

Unless otherwise indicated, the stored datum is in the local format used by the machine with regard to byte
order and other representational details.

9.19.3 Conventions Used by the buf—-get— Functions

Buffers support a number of similar functions for extracting common data types, and converting them into
Lisp values. These functions are named starting with the buf-get— prefix, followed by an abbreviated
type name.

Each of these functions takes two arguments: buf specifies the buffer and pos specifies the byte offset
position into the buffer which holds the low-order byte of the datum to be extracted.

If any portion of requested datum lies outside of the boundaries of the buffer, an error exception is thrown.
The extracted value is converted to a Lisp datum. For the majority of these functions, the returned value is

of type integer. The buf-get-float and buf-get-double return a floating-point value. The buf-
get-cptr function returns a value of type cptr.

9.19.4 Function make-buf
Syntax:

(make-buf len [init-val [alloc-sizell])

Utility Commands 2021-07-12 242

TXR(1) TXR Programming Language TXR(1)

Description:
The make-buf function creates a new buffer object which holds Ien bytes. This argument may

be zero.

If init-val is present, it specifies the value with which the first 1en byte of the buffer are ini-
tialized. If omitted, it defaults to zero. bytes. The value of init-val must lie in the range O to
255.

The alloc-size parameter indicates how much memory to actually allocate for the buffer. If
an argument is not given, the parameter takes on the same value as Ien. If an argument is given,
its value must not be less than len.

9.19.5 Function bufp
Syntax:

(bufp object)
Description:

The bufp function returns t if object is a buf, otherwise it returns nil.

9.19.6 Function 1ength-buf
Syntax:

(length-buf buf)

Description:

The length-buf function retrieves the buffer length: how many bytes are stored in the buffer.

Note: the generic 1ength function is also applicable to buffers.

9.19.7 Function buf-alloc-size
Syntax:

(buf-alloc-size buf)
Description:

The buf-alloc-size function retrieves the allocation size of the buffer.

9.19.8 Function buf-trim
Syntax:

(buf-trim buf)
Description:

The buf-trim function reduces the amount of memory allocated to the buffer to the minimum
required to hold it contents, effectively setting the allocation size to the current length.

The previous allocation size is returned.

9.19.9 Function buf-set-length

Syntax:

Utility Commands 2021-07-12 243

TXR(1) TXR Programming Language TXR(1)

(buf-set-length buf len [init-vall)

Description:

The buf-set-1length function changes the length of the buffer. If the buffer is made longer,
the newly added bytes appear at the end, and are initialized to the value given by init-val. If
init-val is specified, its value must be in the range 0 to 255. It defaults to zero.

9.19.10 Function copy-buf
Syntax:
(copy-buf buf)

Description:

The copy-buf function returns a duplicate of buf: an object distinct from buf which has the
same length and contents, and compares equal to buf.

9.19.11 Accessor sub—-buf
Syntax:

(sub-buf buf [from [to]])
(set (sub-buf buf [from [to]]) new-val)

Description:

The sub-buf function has the same semantics as the sub function, except that the first argument
must be a buffer.

The extracted sub-range of a buffer is itself a buffer object.

If sub-buf is used as a syntactic place, the argument expressions buf, from, to and new-val
are evaluated just once. The prior value, if required, is accessed by calling buf-sub and new-
val is then stored via replace-buf.

9.19.12 Function replace-buf
Syntax:

(replace-buf buf item-sequence [from [to]])

Description:

The replace-buf function has the same semantics as the replace function, except that the
first argument must be a buffer.

The elements of item-sequence are stored into buf as if using the buf-put-u8 function
and therefore must be suitable val arguments for that function.

The of the arguments, semantics and return value given for replace apply to replace-buf.

9.19.13 Function buf-1list
Syntax:

(buf-list 1ist)
Description:

The buf-1ist function creates and returns a new buffer, whose contents are derived from the

Utility Commands 2021-07-12 244

TXR(1)

TXR Programming Language TXR(1)

elements of 11ist, which may be any kind of sequence.

The elements of 1ist must be integers whose values lie in the range 0 to 255, or else characters
whose code point values lie in that range. These values are placed into the newly created buffer,
which therefore has the same length as 1ist.

9.19.14 Function buf-put-buf
Syntax:
(buf-put-buf dst-buf pos src-buf)
Description:
The buf-put-buf function stores a copy of buffer src—buf into dst-buf at the offset indi-
cated by pos.
The source and destination memory regions may overlap.

The return value is src-buf.

Note: the effect of a buf-put-buf operation may also be performed by a suitable call to
replace-buf; however, buf-put-buf is less general: it doesn’t insert or delete by replacing
destination ranges with data of differing length, and requires a source operand of buffer type.

9.19.15 Function buf-put—-i8
Syntax:
(buf-put-1i8 buf pos val)
Description:
The buf-put-1i8 converts val into an 8-bit signed integer, and stores it into the buffer at the

offset indicated by pos.

The return value is val.

9.19.16 Function buf-put-u8
Syntax:
(buf-put-u8 buf pos val)
Description:
The buf-put-u8 converts val into an 8-bit unsigned integer, and stores it into the buffer at the

offset indicated by pos.

The return value is val.

9.19.17 Function buf-put-i16
Syntax:

(buf-put-i16 buf pos val)
Description:

The buf-put-1i16 converts val into a sixteen bit signed integer, and stores it into the buffer at
the offset indicated by pos.

Utility Commands 2021-07-12 245

TXR(1) TXR Programming Language TXR(1)

The return value is val.

9.19.18 Function buf-put-ulé6
Syntax:

(buf-put-ul6 buf pos val)
Description:
The buf-put-ulé converts val into a sixteen bit unsigned integer, and stores it into the buffer

at the offset indicated by pos.

The return value is val.

9.19.19 Function buf-put-132
Syntax:
(buf-put-i32 buf pos val)
Description:
The buf-put-132 converts val into a 32-bit signed integer, and stores it into the buffer at the

offset indicated by pos.

The return value is val.

9.19.20 Function buf-put-u32
Syntax:

(buf-put-u32 buf pos val)
Description:
The buf-put-u32 converts val into a 32-bit unsigned integer, and stores it into the buffer at

the offset indicated by pos.

The return value is val.

9.19.21 Function buf-put-1i64
Syntax:
(buf-put-i64 buf pos val)
Description:
The buf-put-164 converts val into a 64-bit signed integer, and stores it into the buffer at the

offset indicated by pos.

The return value is val.

9.19.22 Function buf-put-u64
Syntax:

(buf-put-u64 buf pos val)

Utility Commands 2021-07-12 246

TXR(1) TXR Programming Language TXR(1)

Description:
The buf-put-u64 converts the value val into a 64-bit unsigned integer, and stores it into the

buffer at the offset indicated by pos.

The return value is val.

9.19.23 Function buf-put-char
Syntax:

(buf-put—-char buf pos val)
Description:
The buf-put-char converts val into a value of the C type char and stores it into the buffer
at the offset indicated by pos.

The return value is val.

Note that the char type may be signed or unsigned.

9.19.24 Function buf-put—-uchar
Syntax:

(buf-put—-uchar buf pos val)

Description:

The buf-put—-uchar converts val into a value of the C type unsigned char and stores it
into the buffer at the offset indicated by pos.

9.19.25 Function buf-put-short
Syntax:

(buf-put-short buf pos val)

Description:

The buf-put-short converts val into a value of the C type short and stores it into the buf-
fer at the offset indicated by pos.

9.19.26 Function buf-put—-ushort
Syntax:

(buf-put-ushort buf pos val)

Description:

The buf-put-ushort converts val into a value of the C type unsigned short and stores
it into the buffer at the offset indicated by pos.

9.19.27 Function buf-put—-int
Syntax:

(buf-put-int buf pos val)

Utility Commands 2021-07-12 247

TXR(1) TXR Programming Language TXR(1)

Description:

The buf-put-int converts val into a value of the C type int and stores it into the buffer at
the offset indicated by pos.

9.19.28 Function buf-put—-uint
Syntax:

(buf-put-uint buf pos val)

Description:

The buf-put-uint converts val into a value of the C type unsigned int and stores it into
the buffer at the offset indicated by pos.

9.19.29 Function buf-put-long
Syntax:

(buf-put-long buf pos val)
Description:

The buf-put-1long converts val into a value of the C type long and stores it into the buffer
at the offset indicated by pos.

9.19.30 Function buf-put-ulong
Syntax:

(buf-put-ulong buf pos val)

Description:

The buf-put-ulong converts val into a value of the C type unsigned long and stores it
into the buffer at the offset indicated by pos.

9.19.31 Function buf-put-float
Syntax:

(buf-put-float buf pos val)
Description:
The buf-put-float converts val into a value of the C type £1loat and stores it into the buf-
fer at the offset indicated by pos.

Note: the conversion of a TXR Lisp floating-point value to the C type float may be inexact, reduc-
ing the numeric precision.

9.19.32 Function buf-put—-double
Syntax:

(buf-put-double buf pos val)

Description:

The buf-put-double converts val into a value of the C type double and stores it into the
buffer at the offset indicated by pos.

Utility Commands 2021-07-12 248

TXR(1) TXR Programming Language TXR(1)

9.19.33 Function buf-put-cptr
Syntax:

(buf-put-cptr buf pos val)
Description:

The buf-put-cptr expects val to be of type cptr. It stores the object’s pointer value into
the buffer at the offset indicated by pos.

9.19.34 Function buf-get—-1i8
Syntax:

(buf-get-1i8 buf pos)
Description:

The buf-get-1i8 function extracts and returns signed 8-bit integer from buf at the offset given
by pos.

9.19.35 Function buf-get—-u8
Syntax:

(buf-get-u8 buf pos)
Description:

The buf-get-u8 function extracts and returns an unsigned 8-bit integer from buf at the offset
given by pos.

9.19.36 Function buf-get-1i16
Syntax:

(buf-get-i16 buf pos)
Description:

The buf-get-116 function extracts and returns a signed 16-bit integer from buf at the offset
given by pos.

9.19.37 Function buf-get-ulé6
Syntax:

(buf-get-ul6 buf pos)
Description:

The buf-get-ulé6 function extracts and returns an unsigned 16-bit integer from buf at the off-
set given by pos.

9.19.38 Function buf-get—-132
Syntax:

(buf-get-i32 buf pos)
Description:

The buf-get-132 function extracts and returns a signed 32-bit integer from buf at the offset
given by pos.

Utility Commands 2021-07-12 249

TXR(1) TXR Programming Language TXR(1)

9.19.39 Function buf-get-u32
Syntax:

(buf-get-u32 buf pos)
Description:

The buf-get-u32 function extracts and returns an unsigned 32-bit integer from buf at the off-
set given by pos.

9.19.40 Function buf-get-1i64
Syntax:

(buf-get-i64 buf pos)
Description:

The buf-get-164 function extracts and returns a signed 64-bit integer from buf at the offset
given by pos.

9.19.41 Function buf-get-u64
Syntax:

(buf-get-u64 buf pos)
Description:

The buf-get-u64 function extracts and returns an unsigned 64-bit integer from buf at the off-
set given by pos.

9.19.42 Function buf-get—-char
Syntax:

(buf—-get—-char buf pos)

Description:

The buf-get—char function extracts and returns a value of the C type char from buf at the
offset given by pos. Note that char may be signed or unsigned.

9.19.43 Function buf-get-uchar
Syntax:

(buf—-get—-uchar buf pos)

Description:

The buf-get-uchar function extracts and returns a value of the C type unsigned char
from buf at the offset given by pos.

9.19.44 Function buf-get—-short
Syntax:

(buf—-get—-short buf pos)

Description:

The buf-get-short function extracts and returns a value of the C type short from buf at
the offset given by pos.

Utility Commands 2021-07-12 250

TXR(1) TXR Programming Language TXR(1)

9.19.45 Function buf-get—-ushort
Syntax:

(buf-get—-ushort buf pos)

Description:

The buf-get-ushort function extracts and returns a value of the C type unsigned short
from buf at the offset given by pos.

9.19.46 Function buf-get—-int
Syntax:

(buf-get-int buf pos)
Description:

The buf-get-int function extracts and returns a value of the C type int from buf at the off-
set given by pos.

9.19.47 Function buf-get-uint
Syntax:

(buf-get-uint buf pos)
Description:

The buf-get-uint function extracts and returns a value of the C type unsigned int from
buf at the offset given by pos.

9.19.48 Function buf-get-long
Syntax:

(buf—-get—-long buf pos)
Description:

The buf-get-1long function extracts and returns a value of the C type long from buf at the
offset given by pos.

9.19.49 Function buf-get-ulong
Syntax:

(buf—-get—-ulong buf pos)
Description:

The buf-get-ulong function extracts and returns a value of the C type unsigned long
from buf at the offset given by pos.

9.19.50 Function buf-get-float
Syntax:

(buf-get-float buf pos)

Description:

The buf-get-float function extracts and returns a value of the C type float from buf at
the offset given by pos, returning that value as a Lisp floating-point number.

Utility Commands 2021-07-12 251

TXR(1) TXR Programming Language TXR(1)

9.19.51 Function buf-get—-double
Syntax:

(buf—-get—-double buf pos)
Description:

The buf-get-double function extracts and returns a value of the C type double from buf at
the offset given by pos, returning that value as a Lisp floating-point number.

9.19.52 Function buf-get-cptr
Syntax:

(buf-get—-cptr buf pos)
Description:

The buf-get-cptr function extracts a C pointer from buf at the offset given by pos, return-
ing that value as a Lisp object of type cnum.

9.19.53 Function put-buf
Syntax:

(put-buf buf [pos [stream]])
Description:

The put-buf function writes the contents of buffer buf, starting at position pos to a stream,
through to the last byte, if possible. Successive bytes from the buffer are written to the stream as if
by a put-byte operation.

If st reamis omitted, it defaults to *stdout *.

If pos is omitted, it defaults to zero. It indicates the starting position within the buffer.

The stream must support the put-byte operation. Streams which support put-byte can be
expected to support put-buf and, conversely, streams which do not support put-byte do not

support put —buf.

The put-buf function returns the position of the last byte that was successfully written. If the
buffer was written through to the end, then this value corresponds to the length of the buffer.

If an error occurs before any bytes are written, the function throws an error.

9.19.54 Functions fill-buf and fill-buf-adjust
Syntax:

(fill-buf buf [pos [stream]])
(fill-buf-adjust buf [pos [stream]])

Description:

The £ill-buf reads bytes from stream and writes them into consecutive locations in buffer
buf starting at position pos. The bytes are read as if using the get -byte function.

If the st ream argument is omitted, it defaults to *stdin*.

If pos is omitted, it defaults to zero. It indicates the starting position within the buffer.

Utility Commands 2021-07-12 252

TXR(1)

TXR Programming Language TXR(1)

The stream must support the get-byte operation. Buffers which support get-byte can be
expected to support £i11-buf and, conversely, streams which do not support get -byte do not
support £111-buf.

The £ill-buf function returns the position that is one byte past the last byte that was success-
fully read. If an end-of-file or other error condition occurs before the buffer is filled through to the
end, then the value returned is smaller than the buffer length. In this case, the area of the buffer
beyond the read size retains its previous content.

If an error situation occurs other than a premature end-of-file before any bytes are read, then an
exception is thrown.

If an end-of-file condition occurs before any bytes are read, then zero is returned.

The fill-buf-adjust differs usefully from £ill-buf as follows. Whereas fill-buf
doesn’t manipulate the length of the buffer at any stage of the operation, the fill-buf-adjust
begins by adjusting the length of the buffer to the underlying allocated size. Then it performs the
fill operation in exactly the same manner as £i11-buf. Finally, if the operation succeeds, then
fill-buf-adjust adjusts the length of the buffer to match the position that is returned.

9.19.55 Function get-line—-as-buf

Syntax:

(get—-line-as-buf [stream])

Description:

The get-1ine-as-buf reads bytes from stream as if using the get-byte function, until
either a the newline character is encountered, or else the end of input is encountered. The bytes
which are read, exclusive of the newline character, are returned in a new buffer object. The new-
line character, if it occurs, is consumed.

If st reamis omitted, it defaults to *stdin*.

The stream is required to support byte input.

9.19.56 Functions file—get-buf and command-get-buf

Syntax:

(file—-get-buf name [max-bytes [skip-bytes]])
(command-get-buf cmd [max-bytes [skip-bytes]])

Description:

The file—get-buf function opens a binary stream over the file indicated by the string argu-
ment name for reading. By default, the entire file is read and its contents are returned as a buffer
object. The buffer’s length corresponds to the number of bytes read from the file.

The command-get-buf function opens a binary stream over an input command pipe created
for the command string cmd, as if by the open—command function. It read bytes from the pipe
until the indication that no more input is available. The bytes are returned aggregated into a buffer
object.

If the max-bytes parameter is given an argument, it must be a nonnegative integer. That value
specifies a limit on the number of bytes to read. A buffer no longer than max—-bytes shall be
returned.

Utility Commands 2021-07-12 253

TXR(1)

TXR Programming Language TXR(1)

If the skip-bytes parameter is given an argument, it must be a nonnegative integer. That value
specifies how many initial bytes of the input should be discarded before accumulation of the buffer
begins. If possible, the semantics of this parameter is achieved by performing a seek-stream
operation, falling back on reading and discarding bytes if the stream doesn’t support seeking.

9.19.57 Functions file—-put-buf, file—append-buf and command-put-buf

file-put-buf name buf skip-bytes)
file-place-buf name buf skip-bytes)
file-append-buf name buf)

(
(
(
(command-put-buf cmd buf)

Description:

The file-put-buf function opens a text stream over the file indicated by the string argument
name, writes the contents of the buffer object buf into the file, and then closes the file. If the file
doesn’t exist, it is created. If it exists, it is truncated to zero length and overwritten. The default
value of the optional skip-bytes parameter is zero. If an argument is given, it must be a non-
negative integer. If it is nonzero, then after opening the file, before writing the buffer, the function
will seek to an offset of that many bytes from the start of the file. The contents of buf will be
written at that offset.

The file-place-buf function does not truncate an existing file to zero length. In all other
regards, it is equivalent to file-put-buf.

The file-append-buf function is similar to £ile-put-buf except that if the file exists, it
isn’t overwritten. Rather, the buffer is appended to the file.

The command-put-buf function opens an output text stream over an output command pipe cre-
ated for the command specified in the string argument cmd, as if by the open-command func-
tion. It then writes the contents of buffer bu £ into the stream and closes the stream.

The return value of all three functions is that of the put-buf operation which is implicitly per-
formed.

9.19.58 Functions buf-str and str-buf

(buf-str buf [null-term-pl]l)
(str-buf str [null-term—-pl)

Description:

The buf-str and str-buf functions perform UTF-8 conversion between the buffer and char-
acter string data types.

The buf-str function takes the contents of buffer buf to be UTF-8 data, which is converted to a
character string and returned. Null bytes in the buffer are mapped to the pseudo-null character
#\xDCO0O0. If a true argument is given to the null-term-p parameter, then if the contents of
buf end in a null byte, that byte is not included in the conversion.

The str-buf function UTF-8-encodes str and returns a buffer containing the converted repre-
sentation. If a true argument is given to the null-term-p parameter, then a null terminating
byte is added to the buffer. This byte is added even if the previous byte is already a null byte from
the conversion of a pseudo-null character occurring in str.

Utility Commands 2021-07-12 254

TXR(1) TXR Programming Language TXR(1)

9.19.59 Functions buf-int and buf-uint
Syntax:

(buf-int integer)
(buf-uint integer)

Description:

The buf-int and buf-uint functions convert a signed and unsigned integer, respectively, or
else a character, into a binary representation, which is returned as a buffer object.

Under both functions, the representation uses big endian byte order: most significant byte first.

The buf-uint function requires a nonnegative integer argument, which may be a character.
The representation stored in the buffer is a pure binary representation of the value using the small-
est number of bytes required for the given integer value.

The buf-int function requires an integer or character argument. The representation stored in the
buffer is a two’s complement representation of integer using the smallest number of bytes
which can represent that value. If integer is nonnegative, then the first byte of the buffer lies in
the range 0 to 127. If integer is negative, then the first byte of the buffer lies in the range 128
to 255. The integer 255 therefore doesn’t convert to the buffer #b’ ££’ but rather #b’ 00f£’.
The buffer #b’ ££' represents -1.

If the integer argument is a character object, it is taken to be its Unicode code point value, as
returned by the int—chr function.

9.19.60 Functions int-buf and uint-buf
Syntax:

(int-buf buf)
(uint-buf buf)

Description:

The int-buf and uint-buf functions recover an integer value from its binary form which
appears inside buf, which must be a buffer object. These functions expect buf to contain the rep-
resentation produced by, respectively, the functions buf-int and buf-uint.

If buf holds the representation of an integer value n, as produced by (buf-int n) then
(int-buf buf) returns n.

The same relationship holds between buf-uint and uint-buf.
Thus, these equalities hold:

(= (int-buf (buf-int n)) n)
(= (uint-buf (buf-uint n)) n)

provided that n is of integer type and, in the case of buf-uint, nonnegative.

9.20 Structures

TXR supports user-defined types in the form of structures. Structures are objects which hold multiple stor-
age locations called slots, which are named by symbols. Structures can be related to each other by inheri-
tance. Multiple inheritance is permitted.

Utility Commands 2021-07-12 255

TXR(1) TXR Programming Language TXR(1)

The type of a structure is itself an object, of type st ruct-type.

When the program defines a new structure type, it does so by creating a new st ruct—type instance, with
properties which describe the new structure type: its name, its list of slots, its initialization and "boa con-
structor” functions, and the structures type it inherits from (the supertypes).

The st ruct-type object is then used to generate instances.

Structures instances are not only containers which hold named slots, but they also indicate their struct type.
Two structures which have the same number of slots having the same names are not necessarily of the same

type.

Structure types and structures may be created and manipulated using a programming interface based on
functions.

For more convenient and clutter-free expression of structure-based program code, macros are also provided.

Furthermore, concise and expressive slot access syntax is provided courtesy of the referencing dot and
unbound referencing dot syntax, a syntactic sugar for the gref and uref macros.

Structure types have a name, which is a symbol. The typeof function, when applied to any struct type,
returns the symbol struct-type. When typeof is applied to a struct instance, it returns the name of
the struct type. Effectively, struct names are types.

The consequences are unspecified if an existing struct name is reused for a different struct type, or an exist-
ing type name is used for a struct type.

9.20.1 Static Slots

Structure slots can be of two kinds: they can be the ordinary instance slots or they can be static slots. The
instances of a given structure type have their own instance of a given instance slot. However, they all share
a single instance of a static slot.

Static slots are allocated in a global area associated with a structure type and are initialized when the struc-
ture type is created. They are useful for efficiently representing properties which have the same value for all
instances of a struct. These properties don’t have to occupy space in each instance, and time doesn’t have to
be wasted initializing them each time a new instance is created. Static slots are also useful for struct-spe-
cific global variables. Lastly, static slots are also useful for holding methods and functions. Although
structures can have methods and functions in their instances, usually, all structures of the same type share
the same functions. The defstruct macro supports a special syntax for defining methods and struct-spe-
cific functions at the same time when a new structure type is defined. The de fmeth macro can be used for
adding new methods and functions to an existing structure and its descendants.

Static slots may be assigned just like instance slots. Changing a static slot changes that slot in every struc-
ture of the same type.

Static slots are not listed in the #S (. . .) notation when a structure is printed. When the structure notation
is read from a stream, if static slots are present, they will be processed and their values stored in the static
locations they represent, thus changing their values for all instances.

Static slots are inherited just like instance slots. The following simplified discussion is restricted to single
inheritance. A detailed description of multiple inheritance is given in the Multiple Inheritance section
below. If a given structure B has some static slot s, and a new structure D is derived from B, using def—
struct, and does not define a slot s, then D inherits s. This means that D shares the static slot with B:
both types share a single instance of that slot.

Utility Commands 2021-07-12 256

TXR(1) TXR Programming Language TXR(1)

On the other hand if D defines a static slot s then that slot will have its own instance in the D structure type;
D will not inherit the B instance of slot s. Moreover, if the the definition of D omits the init—form for
slot s, then that slot will be initialized with a copy of the current value of slot s of the B base type, which
allows derived types to obtain the value of base type’s static slot, yet have that in their own instance.

The slot type can be overridden. A structure type deriving from another type can introduce slots which have
the same names as the supertype, but are of a different kind: an instance slot in the supertype can be
replaced by a static slot in the derived type or vice versa.

Note that, in light of the above type overriding possibility, the static slot value propagation happens only
from the immediate supertype. If D is is derived from G which has a static slot s, whereas D specifies s as
an instance slot, but then B again specifies a static slot s, then B’s slot s will not inherit the value from G’s
s slot. Simply, B’s supertype is D and that supertype is not considered to have a static slot s.

A structure type is associated with a static initialization function which may be used to store initial values
into static slots. This function is invoked once in a type’s life time, when the type is created. The function
is also inherited by derived struct types and invoked when they are created.

9.20.2 Multiple Inheritance

When a structure type is defined, two or more supertypes may be specified. The new structure type then
potentially inherits instance and static slots from all of the specified supertypes, and is considered to be a
subtype of all of them. This situation with two or more supertypes is called multiple inheritance. The con-
trasting term is single inheritance, denoting the situation when a structure has exactly one supertype. TXR
Lisp’s struct types initially permitted only single inheritance. Multiple inheritance support was introduced
in version 229, as a straightforward extension of single inheritance semantics.

In the make-struct-type function and defstruct macro, a list of supertypes can be given instead
of just one. The type then inherits slots from all of the specified types. If any conflicts arise among the
supertypes due to slots having the same name, the leftmost supertype dominates: that type’s slot will be
inherited. If the leftmost slot is static, then that static slot will be inherited. Otherwise, the instance slot
will be inherited.

Of course, any slot which is specified in the newly defined type itself dominates over any same-named slots
among the supertypes.

The new structure type inherits all of the slot initializing expressions, as well as : init and :postinit
methods of all of its supertypes.

Each time the structure is instantiated, the :init initializing expressions inherited from the supertypes,
together with the slot initializing expressions, are all evaluated, in right-to-left order: the initializations con-
tributed by each supertype are performed before considering the next supertype to the left. The :pos-
tinit methods are similarly invoked in right-to-left order, before the :postinit methods of the new
type itself. Thus the order is: supertype inits, own inits, supertype post-inits, own post-inits.

9.20.3 Duplicate Supertypes

Multiple inheritance makes it possible for a type to inherit the same supertype more than once, either
directly (by naming it more than once as a direct supertype) or indirectly (by inheriting two or more differ-
ent types, which have a common ancestor). The latter situation is sometimes referred to as the diamond
problem.

Until TXR 242, the situation of duplicate supertypes was ignored for the purposes of object initialization. It

was documented that if a supertype is referenced by inheritance, directly or indirectly, two or more times,
then its initializing expressions are evaluated that many times.

Utility Commands 2021-07-12 257

TXR(1) TXR Programming Language TXR(1)

Starting in TXR 243, duplicate supertypes no longer give rise to duplicate initialization. When an object is
instantiated, only one initialization of a duplicated supertype occurs. The subsequent initializations that
would take place in the absence of duplicate detection are suppressed.

Note also that the : £ini mechanism is tied to initialization. Initialization of an object registers the finaliz-
ers, and so in TXR 242, : £ini finalizers are also executed multiple times, if : init initializers are.

Examples:

Consider following program:

(defstruct base ()
(:init (me) (put-line "base init"))
(:fini (me) (put-line "base fini")))

(defstruct dl (base)
(:init (me) (put-line "d1l init"))
(:fini (me) (put-line "d1l f£ini")))

(defstruct d2 (base)
(:init (me) (put-line "d2 init"))
(:fini (me) (put-line "d2 £f£ini")))

(defstruct s (dl d2))
(call-finalizers (new s))
Under TXR 242, and earlier versions that support multiple inheritance, it produces the output:

base init
d2 init
base init
dl init
dl fini
base fini
d2 fini
base fini

The supertypes are initialized in a right-to-left traversal of the type lattice, without regard for
base being duplicated.

Starting with TXR 243, the output is:

base init
d2 init
dl init
dl fini
d2 fini
base fini

The rightmost duplicate of the base is initialized, so that the initialization is complete prior to the
initializations of any dependent types. Likewise, the same rightmost duplicate of the base is final-

ized, so that finalization takes place after that of any dependent struct types.

Note, however, that the derived function function mechanism is not required to detect

Utility Commands 2021-07-12 258

TXR(1) TXR Programming Language TXR(1)

duplicated direct supertypes. If a supertype implements the derived function to detect situa-
tions when it is the target of inheritance, and some subtype inherits that type more than once, that
function may be called more than once. The behavior is unspecified.

9.20.4 Dirty Flags

All structure instances contain a Boolean flag called the dirty flag. This flag is not a slot, but rather a meta-
data property that is exposed to program access. When the flag is set, an object is said to be dirty; otherwise
it is clean.

Newly constructed objects come into existence dirty. The dirty flag state can be tested with the function
test-dirty. An object can be marked as clean by clearing its dirty flag with clear-dirty. A com-
bined operation test-clear-dirty is provided which clears the dirty flag, and returns its previous
value.

The dirty flag is set whenever a new value is stored into the instance slot of an object.

Note: the dirty flag can be used to support support the caching of values derived from an object’s slots. The
derived values don’t have to be recomputed while an object remains clean.

9.20.5 Equality Substitution

In object-based or object-oriented programming, sometimes it is necessary for a new data type to provide
its own notion of equality: its own requirements for when two distinct instances of the type are considered
equal. Furthermore, types sometimes have to implement their own notion, also, of inequality: the require-
ments for the manner in which one instance is considered lesser or greater than another.

TXR Lisp structures implement a concept called equality substitution which provides a simple, unified way
for the implementor of an object to encode the requirements for both equality and inequality. Equality sub-
stitution allows for objects to be used as keys in a hash table according to the custom equality, without the
programmer being burdened with the responsibility of developing a custom hashing function.

An object participates in equality substitution by implementing the equal method. The equal method
takes no arguments other than the object itself. It returns a representative value which is used in place of
that object for the purposes of equal comparison.

Whenever an object which supports equality substitution is used as an argument of any of the functions
equal, nequal, greater, less, gequal, lequal or hash—-equal, the equal method of that
object is invoked, and the return value of that method is taken in place of that object.

The same is true if an object which supports equality substitution is used as a key in an :equal-based
hash table.

The substitution is applied repeatedly: if the return value of the object’s equal method is an object which
itself supports equality substitution, than that returned object’s method is invoked on that object to fetch its
equality substitute. This repeats as many times as necessary until an object is determined which isn’t a
structure that supports equality substitution.

Once the equality substitute is determined, then the given function proceeds with the replacement object.

Thus for example equal compares the replacement object in place of the original, and an :equal-
based hash table uses the replacement object as the key for the purposes of hashing and comparison.

Utility Commands 2021-07-12 259

TXR(1)

TXR Programming Language TXR(1)

9.20.6 Macro defstruct

Syntax:

(defstruct {name | (name arg*)} super
slot-specifier*)

Description:

The defstruct macro defines a new structure type and registers it under name, which must be
a bindable symbol, according to the bindable function. Likewise, the name of every sl1ot must
also be a bindable symbol.

The super argument must either be nil, or a symbol which names an existing struct type, or
else a list of such symbols. The newly defined struct type will inherit all slots, as well as initializa-
tion behaviors from the specified struct types.

The defstruct macro is implemented using the make-struct-type function, which is
more general. The macro analyzes the defstruct argument syntax, and synthesizes arguments
which are then used to call the function. Some remarks in the description of defstruct only
apply to structure types defined using that macro.

Slots are specified using zero or more slot specifiers. Slot specifiers come in the following variety:

name The simplest slot specifier is just a name, which must be a bindable symbol, as defined by
the bindable function. This form is a short form for the (:instance name) syn-
tax.

(name init-form)
This syntax is a short form for the (:instance name init-form) syntax.

(:instance name [init-form])
This syntax specifies an instance slot called name whose initial value is obtained by eval-
uating init-form whenever a new instance of the structure is created. This evaluation
takes place in the original lexical environment in which the defstruct form occurs. If
init-formis omitted, the slot is initialized to nil.

(:static name [init-form])
This syntax specifies a static slot called name whose initial value is obtained by evaluat-
ing init-form once, during the evaluation of the defstruct form in which it
occurs, if the init—-formis present. If init—-formis absent, and a static slot with the
same name exists in the super base type, then this slot is initialized with the value of
that slot. Otherwise it is initialized to nil.

The definition of a static slot in a defstruct causes the new type to have its own
instance that slot, even if a same-named static slot occurs in the super base type, or its
bases.

(:method name (param+) body-form*)

This syntax creates a static slot called name which is initialized with an anonymous func-
tion. The anonymous function is created during the evaluation of the defstruct form.
The function takes the arguments specified by the param symbols, and its body consists
of the body—forms. There must be at least one param. When the function is invoked
as a method, as intended, the leftmost param receives the structure instance. The
body-forms are evaluated in a context in which a block named name is visible. Conse-
quently, return-from may be used to terminate the execution of a method and return a
value. Methods are invoked using the instance. (name arg ...) syntax, which
implicitly inserts the instance into the argument list.

Due to the semantics of static slots, methods are naturally inherited from a base structure

Utility Commands 2021-07-12 260

TXR(1) TXR Programming Language TXR(1)

to a derived one, and defining a method in a derived class which also exists in a base class
performs OOP-style overriding.

(:function name (param*) body—-form*)

This syntax creates a static slot called name which is initialized with an anonymous func-
tion. The anonymous function is created during the evaluation of the defstruct form.
The function takes the arguments specified by the param symbols, and its body consists
of the body-forms. This specifier differs from :method only in one respect: there
may be zero parameters. A structure function defined this way is intended to be used as a
utility function which doesn’t receive the structure instance as an argument. The body—
forms are evaluated in a context in which a block named name is visible. Consequently,
return-from may be used to terminate the execution of the function and return a
value. Such functions are called using the (call instance.name arg ...) or
else the DWIM brackets syntax [instance.name arg ...].

The remarks about inheritance and overriding in the description of :method also apply
to : function.

(:init (param) body-form*)
The :init specifier doesn’t describe a slot. Rather, it specifies code which is executed
when a structure is instantiated, before the slot initializations specific to the structure type
are performed. The code consists of body—rforms which are evaluated in order in a lexi-
cal scope in which the variable param is bound to the structure object.

The :init specifier may not appear more than once in a given defstruct form.

When an object with one or more levels of inheritance is instantiated, the : init code of
a base structure type, if any, is executed before any initializations specific to a derived
structure type. Under multiple inheritance, the : init code of the rightmost base type is
executed first, then that of the remaining bases in right-to-left order.

The :init initializations are executed before any other slot initializations. The argument
values passed to the new or 1new operator or the make-struct function are not yet
stored in the object’s slots, and are not accessible. Initialization code which needs these
values to be stable can be defined with :postinit.

Initializers in base structures must be careful about assumptions about slot kinds, because
derived structures can alter static slots to instance slots or vice versa. To avoid an
unwanted initialization being applied to the wrong kind of slot, initialization code can be
made conditional on the outcome of static-slot—p applied to the slot. (Code gener-
ated by defstruct for initializing instance slots performs this kind of check).

The body—-forms of an : init specifier are not surrounded by an implicit block.

(:postinit (param) body-form*)

The :postinit specifier is similar to : init. Both specify forms which are evaluated
during object instantiation. The difference is that the body—-forms of a :postinit
are evaluated after other initializations have taken place, including the :init initializa-
tions, as a second pass. By the time :postinit initialization runs, the argument mate-
rial from the make-struct, new or 1new invocation has already been processed and
stored into slots. Like :init actions, :postinit actions registered at different levels
of the type’s inheritance hierarchy are invoked in the base-to-derived order, and in right-
to-left order among multiple bases at the same level.

(:fini (param) body-form*)
The : fini specifier doesn’t describe a slot. Rather, it specifies a finalization function
which is associated with the structure instance, as if by use of the finalize function.

Utility Commands 2021-07-12 261

TXR(1)

TXR Programming Language TXR(1)

This finalization registration takes place as the first step when an instance of the structure
is created, before the slots are initialized and the : init code, if any, has been executed.
The registration takes place as if by the evaluation of the form (finalize obj
(lambda (param) body-form...) t) where obj denotes the structure
instance. Note the t argument which requests reverse order of registration, ensuring that
if an object has multiple finalizers registered at different levels of inheritance hierarchy,
the finalizers specified for a derived structure type are called before inherited finalizers.

The body—-forms of a : £in1i specifier are not surrounded by an implicit block.

Note that an object’s finalizers can be called explicitly with call-finalizers.

The with-objects macro arranges for finalizers to be called on objects when the execution of
a scope terminates by any means.

The slot names given in a defstruct must all be unique among themselves, but they may match
the names of existing slots in the super base type.

A given structure type can have only one slot under a given symbolic name. If a newly specified
slot matches the name of an existing slot in the super type or that type’s chain of ancestors, it is
called a repeated slot.

The kind of the repeated slot (static or instance) is not inherited; it is established by the def-
struct and may be different from the type of the same-named slot in the supertype or its ances-
tors.

If a repeated slot is introduced as a static slot, and has no init-form then it receives the current
of the a static of the same name from the nearest supertype which has such a slot.

If a repeated slot is an instance slot, no such inheritance of value takes place; only the local
init-form applies to it; if it is absent, the slot it initialized to nil in each newly created
instance of the new type.

However, :init and :postinit initializations are inherited from a base type and they apply to
the repeated slots, regardless of their kind. These initializations take place on the instantiated
object, and the slot references resolve accordingly.

The initialization for slots which are specified using the :method or : function specifiers is
reordered with regard to : static slots. Regardless of their placement in the defstruct form,
:method and : function slots are initialized before : static slots. This ordering is useful,
because it means that when the initialization expression for a given static slot constructs an
instance of the struct type, any instance initialization code executing for that instance can use all
functions and methods of the struct type. However, note the static slots which follow that slot in
the defstruct syntax are not yet initialized. If it is necessary for a structure’s initialization code
to have access to all static slots, even when the structure is instantiated during the initialization of a
static slot, a possible solution may be to use lazy instantiation using the 1new operator, rather than
ordinary eager instantiation via new. It is also necessary to ensure that that the instance isn’t
accessed until all static initializations are complete, since access to the instance slots of a lazily
instantiated structure triggers its initialization.

The structure name is specified using two forms, plain name or the syntax (name arg*) If the
second form is used, then the structure type will support "boa construction", where "boa" stands
for "by order of arguments”. The args specify the list of slot names which are to be initialized in
the by-order-of-arguments style. For instance, if three slot names are given, then those slots can be
optionally initialized by giving three arguments in the new macro or the make-struct function.

Utility Commands 2021-07-12 262

TXR(1)

TXR Programming Language TXR(1)

Slots are first initialized according to their init—-forms, regardless of whether they are involved
in boa construction

A slot initialized in this style still has a init-form which is processed independently of the
existence of, and prior to, boa construction.

The boa constructor syntax can specify optional parameters, delimited by a colon, similarly to the
lambda syntax. However, the optional parameters may not be arbitrary symbols; they must be
symbols which name slots. Moreover, the (name init-form [present-p]) optional
parameter syntax isn’t supported.

When boa construction is invoked with optional arguments missing, the default values for those
arguments come from the i1nit-forms in the remaining defstruct syntax.

Examples:

(defvar *counter* 0)

;7 New struct type foo with no super type:

;7 Slots a and b initialize to nil.

;7 Slot ¢ is initialized by wvalue of (inc *counter¥*).
(defstruct foo nil (a b (c (inc *counter*))))

(new foo) -> #S(foo a nil b nil c 1)
(new foo) -> #S(foo a nil b nil c 2)

;7 New struct bar inheriting from foo.
(defstruct bar foo (c 0) (d 100))

(new bar) —-> #S(bar a nil b nil ¢ 0 d 100)
(new bar) —-> #S(bar a nil b nil ¢ 0 d 100)

;7 counter was still incremented during
;7 construction of d:

counter —-> 4

;; override slots with new arguments
(new foo a "str" c 17) -> #S(foo a "str" b nil c 17)

counter -> 5

;77 boa initialization
(defstruct (point x : y) nil (x 0) (y 0))

(new point) -> #S(point x 0 y 0)
(new (point 1 1)) —-> #S(point x 1 y 1)

;7 property list style initialization
;7 can always be used:

(new point x 4 y 5) -> #S(point x 4 y 5)

;7 boa applies last:
(new (point 1 1) x 4 y 5) -> #S(point x 1 y 1)

;; boa with optional argument omitted:

Utility Commands 2021-07-12 263

TXR(1)

TXR Programming Language TXR(1)

(new (point 1)) -> #S(point x 1 y 0)

;; boa with optional argument omitted and
;7 with property list style initialization:
(new (point 1) x 5 y 5) -> #S(point x 1 y 5)

9.20.7 Macro defmeth

Syntax:

(defmeth type—-name name param-1ist body-form*)

Description:

Unless name is one of the two symbols : init or :postinit, the defmeth macro installs a
function into the static slot named by the symbol name in the struct type indicated by type-
name.

If the structure type doesn’t already have such a static slot, it is first added, as if by the static-
slot—-ensure function, subject to the same checks.

If the function has at least one argument, it can be used as a method. In that situation, the leftmost
argument passes the structure instance on which the method is being invoked.

The function takes the arguments specified by the param-11ist symbols, and its body consists of
the body—-forms.

The body-forms are placed into a block named name.

A method named lambda allows a structure to be used as if it were a function. When arguments
are applied to the structure as if it were a function, the 1ambda method is invoked with those
arguments, with the object itself inserted into the leftmost argument position.

If defmeth is used to redefine an existing method, the semantics can be inferred from that of
static-slot-ensure. In particular, the method will be imposed into all subtypes which
inherit (do not override) the method.

If name is the keyword symbol : init, then instead of operating on a static slot, the macro rede-
fines the initfun of the given structure type, as if by a call to the function struct-set-
initfun.

Similarly, if name is the keyword symbol :postinit, then the macro redefines the pos—
tinitfun of the given structure type, as if by a call to the function struct-set-pos-
tinitfun.

When redefining :initfun the admonishments given in the description of struct-set-
initfun apply: if the type has an initfun generated by the defstruct macro, then that
init fun is what implements all of the slot initializations given in the slot specifier syntax. These
initializations are lost if the 1nit fun is overwritten.

The defmeth macro returns a method name: a unit of syntax of the form (meth type-name
name) which can be used as an argument to the accessor symbol-function and other situa-
tions.

Utility Commands 2021-07-12 264

TXR(1) TXR Programming Language TXR(1)

9.20.8 Macros new and 1lnew
Syntax:

(new {name | (name arg*)} {slot init-form}*)
(Ilnew {name | (name arg*)} {slot init-form}*)

Description:

The new macro creates a new instance of the structure type named by name.

If the structure supports "boa construction”, then, optionally, the arguments may be given using the
syntax (name arg*) instead of name.

Slot values may also be specified by the sIot and init-formarguments.

Note: the evaluation order in new is surprising: namely, init—-forms are evaluated before args
if both are present.

When the object is constructed, all default initializations take place first. If the object’s structure
type has a supertype, then the supertype initializations take place. Then the type’s initializations
take place, followed by the slot init-form overrides from the new macro, and lastly the "boa
constructor” overrides.

If any of the initializations abandon the evaluation of new by a nonlocal exit such as an exception
throw, the object’s finalizers, if any, are invoked.

The macro 1new differs from new in that it specifies the construction of a lazy struct, as if by the
make-lazy-struct function. When 1new is used to construct an instance, a lazy struct is
returned immediately, without evaluating any of the the arg and init-form expressions. The
expressions are evaluated when any of the object’s instance slots is accessed for the first time. At
that time, these expressions are evaluated (in the same order as under new) and initialization pro-
ceeds in the same way.

If any of the initializations abandon the delayed initializations steps arranged by 1new by a nonlo-
cal exit such as an exception throw, the object’s finalizers, if any, are invoked.

Lazy initialization does not detect cycles. Immediately prior to the lazy initialization of a struct,
the struct is marked as no longer requiring initialization. Thus, during initialization, its instance
slots may be freely accessed. Slots not yet initialized evaluate as nil.

9.20.9 Macros new* and 1lnew*
Syntax:

(new* {expr | (expr arg*)} {slot init-form}*)
(lnew* {expr | (expr arg*)} {slot init-form}*)

Description:
The new* and 1new* macros are variants, respectively, of new and 1new.
The only difference in behavior in these macros relative to new and 1new is that the name argu-

ment is replaced with an expression expr which is evaluated. The value of expr must be a struct
type, or a symbol which is the name of a struct type.

Utility Commands 2021-07-12 265

TXR Programming Language TXR(1)

9.20.10 Macrowith-slots

(with-slots ({slot |
body—-form*)

(sym slot)}*) struct—expr

Description:

The with—-slots binds lexical macros to serve as aliases for the slots of a structure.

The struct-expr argument is expected to be an expression which evaluates to a struct object.
It is evaluated once, and its value is retained. The aliases are then established to the slots of the
resulting struct value.

The aliases are specified as zero or more expressions which consist of either a single symbol slot
ora (sym slot) pair. The simple form binds a macro named s1ot to a slot also named sIot.
The pair form binds a macro named symto a slot named slot.

The lexical aliases are syntactic places: assigning to an alias causes the value to be stored into the
slot which it denotes.

After evaluating struct-expr the with-slots macro arranges for the evaluation of body—
forms in the lexical scope in which the aliases are visible.

Dialect Notes:

The intent of the with-slots macro is to help reduce the verbosity of code which makes multi-
ple references to the same slot. Use of with-slots is less necessary in TXR Lisp than other
Lisp dialects thanks to the dot operator for accessing struct slots.

Lexical aliases to struct places can also be arranged with considerable convenience using the
placelet operator. However, placelet will not bind multiple aliases to multiple slots of the
same object such that the expression which produces the object is evaluated only once.

Example:

(defstruct point nil x y)

with-slots introduces verbosity because
The function

Here,
each slot is accessed only once.
is equivalent to:

(defun point-delta (pO
(new point x (- pl.x

pl)

p0.x) y (- pl.y p0.y)))

Also contrast with the

(defun point-delta (pO
(placelet ((x0 p0.x)
(x1 pl.x)

(new point x (- x1

(defun point-delta
(with-slots ((x0 x) (yO
(with-slots ((x1 x)
(new point x

Utility Commands

(p0 pl)

(vl v))
(- x1 x0) vy

2021-07-12

use of placelet:

pl)

(v0 p0.y)

(vl pl.y))

x0) y (= vyl y0)))))

y)) pO
pl

(- vyl y0)))))

266

TXR(1)

TXR Programming Language TXR(1)

9.20.11 Macro gref

Syntax:

(qgref object-form
{slot | (slot arg¥*) | [slot arg*]}+)

Description:

The gref macro ("quoted reference") performs structure slot access. Structure slot access is
more conveniently expressed using the referencing dot notation, which works by translating to qref
gref syntax, according to the following equivalence:

a.b.c.d <=—> (gref a b c d) ;7 a b ¢ d must not be numbers
(See the Referencing Dot section under Additional Syntax.)
The leftmost argument of gref is an expression which is evaluated. This argument is followed by
one or more reference designators. If there are two or more designators, the following equivalence
applies:

(gref obj dl d2 ...) <-—-> (gref (gref obj dl) d2 ...)

That is to say, gref is applied to the object and a single designator. This must yield an object,
which to which the next designator is applied as if by another gre f operation, and so forth.

If the null-safe syntax (t ...) is present, the equivalence becomes more complicated:
(qgref (t obj) dl d2 ...) <---> (qref (qref (t obj) dl) d2 ...)
(gref obj (t dl) d2 ...) <-—--> (gref (t (gref obj dl)) d2 ...)

Thus, gref can be understood in terms of the semantics of the binary form (gqref object-
form designator)

Designators come in three basic forms: a lone symbol, an ordinary compound expression consist-
ing of a symbol followed by arguments, or a DWIM expression consisting of a symbol followed

by arguments.

A lone symbol designator indicates the slot of that name. That is to say, the following equivalence
applies:

(gref o n) <--> (slot o ’'n)
where slot is the structure slot accessor function. Because slot is an accessor, this form
denotes the slot as a syntactic place; slots can be modified via assignment to the gref form and

the referencing dot syntax.

The slot name being implicitly quoted is the basis of the term "quoted reference", giving rise to the
gref name.

A compound designator indicates that the named slot is a function, and arguments are to be
applied to it. The following equivalence applies in this case, except that o is evaluated only once:

(gref o (n arg ...)) <——> (call (slot o 'n) o arg ...)

A DWIM designator similarly indicates that the named slot is a function, and arguments are to be

Utility Commands 2021-07-12 267

TXR(1)

Example:

TXR Programming Language TXR(1)
applied to it. The following equivalence applies:

(gref obj [name arg ...]) <-—> [(slot obj ’'name) o arg ...]
Therefore, under this equivalence, this syntax provides the usual Lisp-1-style evaluation rule via
the dwim operator.

If the object—-form has the syntax (t expression) this indicates null-safe access: if
expression evaluates to nil then the entire expression (qref (t expression) des-—
ignator) formyields nil. This syntax is produced by the . ? notation.

The null-safe access notation prevents not only slot access, but also method or function calls on
nil. When a method or function call is suppressed due to the object being ni1l, no aspect of the
method or function call is evaluated; not only is the slot not accessed, but the argument expres-
sions are not evaluated.

(defstruct foo nil

(array (vec 1 2 3))
(increment (lambda (self index delta)
(inc [self.array index] delta))))

(defvarl s (new foo))

;7 access third element of s.array:

[s.array 2] --> 3

;7 increment first element of array by 42

s. (increment 0 42) -—--> 43

;7 access array member

s.array -—-—> #(43 2 3)

Note how increment behaves much like a single-argument-dispatch object-oriented method.
Firstly, the syntax s. (increment 0 42) effectively selects the increment function which
is particular to the s object. Secondly, the object is passed to the selected function as the leftmost
argument, so that the function has access to the object.

9.20.12 Macro uref

(uref {slot | (slot arg*) | [slot arg*]}+)

Description:

The uref macro ("unbound reference") expands to an expression which evaluates to a function.
The function takes exactly one argument: an object. When the function is invoked on an object, it
references slots or methods relative to that object.

Note: the uref syntax may be used directly, but it is also produced by the unbound referencing
dot syntactic sugar:

.a -——> (uref a)
.?a -——> (uref t a)

Utility Commands 2021-07-12 268

TXR(1) TXR Programming Language TXR(1)

. (f x) -——> (uref (f x))
.(f x).b ——> (uref (f x) b)
.a.(f x).b —> (uref a (f x) b)

The macro may be understood in terms of the following translation scheme:

(uref a b ...) -—=> (lambda (o) (gref o a b ...))
(uref t ab ...) —-—> (lambda (o) (if o (gref o a b ...)))

where o is understood to be a unique symbol (for instance, as produced by the gensym function).
When only one uref argument is present, these equivalences also hold:

(uref (f a b c ...)) <—=> (umeth £ a b c ...)
(uref s) <—=> (usl s)

The terminology "unbound reference" refers to the property that uref expressions produce a
function which isn’t bound to a structure object. The function binds a slot or method; the call to
that function then binds an object to that function, as an argument.

Examples:
Suppose that the objects in 1ist have slots a and b. Then, a list of the a slot values may be
obtained using:
(mapcar .a list)
because this is equivalent to

(mapcar (lambda (o) o.a) list)

Because uref produces a function, its result can be operated upon by functional combinators. For
instance, we can use the juxt combinator to produce a list of two-element lists, which hold the a
and b slots from each objectin 1ist:

(mapcar (juxt .a .b) list)

9.20.13 Macro meth
Syntax:

(meth struct slot curried-expr*)
Description:

The meth macro allows indirection upon a method-like function stored in a function slot.

The meth macro binds struct as the leftmost argument of the function stored in slot, return-
ing a function which takes the remaining arguments. That is to say, it returns a function £ such
that [f arg ...] ocalls [struct.slot struct arg ...] exceptthat struct is
evaluated only once.

If one or more curried-expr expressions are present, their values are bound inside £ also, and
when £ is invoked, these are passed to the function stored in the slot. Thus if £ is produced by
(meth struct slot cl c2 ¢3 ...) then [f arg ...] «calls [struct.slot
struct clv c2v c3v ... arg ...] exceptthat struct is evaluated only once, and

Utility Commands 2021-07-12 269

TXR(1) TXR Programming Language TXR(1)

clv, c2vand c3v are the values of expressions c1, c2 and c3.

The argument st ruct must be an expression which evaluates to a struct. The s1ot argument is
not evaluated, and must be a symbol denoting a slot. The syntax can be understood as a transla-
tion to a call of the method function:

(meth a b) <--> (method a ’b)
If curried-arg expressions are present, the translation may be be understood as:
(meth a b cl c2 ...) <--> [(fun method) a "b cl c2 ...]

In other words the curried-arg expressions are evaluated under the dwim operator evaluation
rules.

Example:

;7 struct for counting atoms eqg to key
(defstruct (counter key) nil
key
(count 0)
(:method increment (self key)
(if (eq self.key key)
(inc self.count))))

;7 pass all atoms in tree to func
(defun map-tree (tree func)
(if (atom tree)
[func tree]
(progn (map-tree (car tree) func)
(map—-tree (cdr tree) func))))

;7 count occurrences of symbol a
;7 using increment method of counter,
;7 passed as func argument to map-tree.

(let ((c (new (counter ’'a)))
(tr "(a (b (a a)) c a d)))
(map-tree tr (meth c increment))
c)

-—> #S(counter key a count 4
increment #<function: type 0>)

9.20.14 Macro umeth
Syntax:

(umeth slot curried-expr*)
Description:

The umeth macro binds the symbol sIot to a function and returns that function.

The curried-expr arguments, if present, are evaluated as if they were arguments to the dwim
operator.

When that function is called, it expects at least one argument. The leftmost argument must be an

Utility Commands 2021-07-12 270

TXR(1) TXR Programming Language TXR(1)

object of struct type.

The slot named s1ot is retrieved from that object, and is expected to be a function. That function
is called with the object, followed by the values of the curried-exprs, if any, followed by that
function’s arguments.

The syntax can be understood as a translation to a call of the umethod function:
(umeth s ...) <--> [umethod ’'s ...]

The macro merely provides the syntactic sugar of not having to quote the symbol, and automati-
cally treating the curried argument expressions using Lisp-1 semantics of the dwim operator.

Example:
;7 seal and dog are variables which hold structures of

;; different types. Both have a method called bark.

(let ((bark-fun (umeth bark)))
[bark-fun dog] ;; same effect as dog. (bark)
[bark-fun seall]) ;; same effect as seal. (bark)

The u in umeth stands for "unbound". The function produced by umeth is not bound to any spe-
cific object; it binds to an object whenever it is invoked by retrieving the actual method from the
object’s slot at call time.

9.20.15 Macro us1
Syntax:
(usl slot)

Description:

The us1 macro binds the symbol sIot to a function and returns that function.

When that function is called, it expects exactly one argument. That argument must be an object of
struct type. The slot named s1ot is retrieved from that object and returned.

The name us1 stands for "unbound slot". The term "unbound" refers to the returned function not

being bound to a particular object. The binding of the slot to an object takes place whenever the
function is called.

9.20.16 Function make-struct-type

Syntax:

(make-struct-type name super static-slots slots
static—-initfun initfun boactor
boactor postinitfun)

Description:

The make-struct-type function creates a new struct type.
The name argument must be a bindable symbol, according to the bindable function. It specifies

the name property of the struct type as well as the name under which the struct type is globally
registered.

Utility Commands 2021-07-12 271

TXR(1) TXR Programming Language TXR(1)

The super argument indicates the supertype for the struct type. It must be either a value of type
struct-type, a symbol which names a struct type, or else nil, indicating that the newly cre-
ated struct type has no supertype.

The static-slots argument is a list of symbol which specify static slots. The symbols must
be bindable and the list must not contain duplicates.

The slots argument is a list of symbols which specifies the instance slots. The symbols must be
bindable and there must not be any duplicates within the list, or against entries in the static-—
slots list.

The new struct type’s effective list of slots is formed by appending together static-slots and
slots, and then appending that to the list of the supertype’s slots, and de-duplicating the result-
ing list as if by the uniqg function. Thus, any slots which are already present in the supertype are
removed. If the structure has no supertype, then the list of supertype slots is taken to be empty.
When a structure is instantiated, it shall have all the slots specified in the effective list of slots.
Each instance slot shall be initialized to the value nil, prior to the invocation of initfun and
boactor.

The static-initfun argument either specifies an initialization function, or is nil, which is
equivalent to specifying a function which does nothing.

Prior to the invocation of static-initfun, each new static slot shall be initialized the value
nil. Inherited static slots retain their values from the supertype.

If specified, static-initfun function must accept one argument. When the structure type is
created (before the make-struct—-type function returns) the static-initfun function is
invoked, passed the newly created structure type as its argument.

The initfun argument either specifies an initialization function, or is nil, which is equivalent
to specifying a function which does nothing. If specified, this function must accept one argument.
When a structure is instantiated, every init fun in its chain of supertype ancestry is invoked, in
order of inheritance, so that the root supertype’s initfun is called first and the structure’s own
specific initfun is called last. These calls occur before the slots are initialized from the arg
arguments or the slot-init-plist of make-struct. Each function is passed the newly
created structure object, and may alter its slots. If multiple inheritance occurs, the initfun
functions of multiple supertypes are called in right-to-left order.

The boactor argument either specifies a by-order-of-arguments initialization function ("boa con-
structor") or is ni1l, which is equivalent to specifying a constructor which does nothing. If speci-
fied, it must be a function which takes at least one argument. When a structure is instantiated, and
boa arguments are given, the boactor is invoked, with the structure as the leftmost argument,
and the boa arguments as additional arguments. This takes place after the processing of initfun
functions, and after the processing of the slot-init-plist specified in the make-struct
call. Note that the boactor functions of the supertypes are not called, only the boactor spe-
cific to the type being constructed.

The postinitfun argument either specifies an initialization function, or is nil, which is
equivalent to specifying a function which does nothing. If specified, this function must accept one
argument. The postinitfun function is similar to initfun. The difference is that pos—
tinitfun functions are called after all other initialization processing, rather than before. They
are are also called in order of inheritance: the postinit fun of a structure’s supertype is called
before its own, and in right-to-left order among multiple supertypes under multiple inheritance.

Utility Commands 2021-07-12 272

TXR(1) TXR Programming Language TXR(1)

9.20.17 Function find-struct-type
Syntax:

(find-struct-type name)

Description:

The find-struct-type returns a st ruct—type object corresponding to the symbol name.
If no struct type is registered under name, then it returns nil.

A struct-type object exists for each structure type and holds information about it. These
objects are not themselves structures and are all of the same type, st ruct-type.

9.20.18 Function st ruct-type-p
Syntax:

(struct-type-p obj)
Description:

The st ruct-type-p function returns t if objis a structure type, otherwise it returns nil.

A structure type is an object of type st ruct-type, returned by find-struct-type.

9.20.19 Function st ruct-type—name
Syntax:

(struct—-type—name type-or-struct)
Description:
The struct-type—name function determines a structure type from the type—-or—-struct

argument and returns that structure type’s symbolic name.

The type-or-struct argument must be either a struct type object (such as the return value of
a successful lookup via find-struct-type), a symbol which names a struct type, or else a
struct instance.

9.20.20 Function super
Syntax:

(super [type-or-struct])

Description:

The super function determines a structure type from the type-or-struct argument and
returns the struct type object which is the supertype of that type, or else nil if that type has no
supertype.

The type-or-struct argument must be either a struct type object, a symbol which names a
struct type, or else a struct instance.

9.20.21 Function make-struct
Syntax:

(make-struct type slot-init-plist arg*)

Utility Commands 2021-07-12 273

TXR(1) TXR Programming Language TXR(1)

Description:

The make-struct function returns a new object which is an instance of the structure type
type.

The type argument must either be a st ruct—-type object, or else a symbol which is the name
of a structure.

The slot-init-plist argument gives a list of slot initializations in the style of a property list,
as defined by the prop function. It may be empty, in which case it has no effect. Otherwise, it
specifies slot names and their values. Each slot name which is given must be a slot of the structure
type. The corresponding value will be stored into the slot of the newly created object. If a slot is
repeated, it is unspecified which value takes effect.

The optional args specify arguments to the structure type’s boa constructor. If the arguments are
omitted, the boa constructor is not invoked. Otherwise the boa constructor is invoked on the struc-
ture object and those arguments. The argument list must match the trailing parameters of the boa
constructor (the remaining parameters which follow the leftmost argument which passes the struc-
ture to the boa constructor).

When a new structure is instantiated by make-struct, its slot values are first initialized by the
structure type’s registered functions as described under make-struct-type. Then, the
slot-init-plist is processed, if not empty, and finally, the args are processed, if present,
and passed to the boa constructor.

If any of the initializations abandon the evaluation of make-struct by a nonlocal exit such as
an exception throw, the object’s finalizers, if any, are invoked.

9.20.22 Function make—-lazy-struct
Syntax:

(make—-lazy—-struct type argfun)
Description:

The make-lazy-struct function returns a new object which is an instance of the structure
type type.

The type argument must either be a st ruct-type object, or else a symbol which is the name
of a structure.

The argfun argument should be a function which can be called with no parameters and returns a
cons cell. More requirements are specified below.

The object returned by make-lazy-struct is a lazily-initialized struct instance, or lazy struct.

A lazy struct remains uninitialized until just before the first access to any of its instance slots. Just
before an instance slot is accessed, initialization takes place as follows. The argfun function is
invoked with no arguments. Its return value must be a cons cell. The car of the cons cell is taken
to be a property list, as defined by the prop function. The cdr field is taken to be a list of argu-
ments. These values are treated as if they were, respectively, the slot-init-plist and the
boa constructor arguments given in a make-struct invocation. Initialization of the structure
proceeds as described in the description of make—-struct.

Utility Commands 2021-07-12 274

TXR(1) TXR Programming Language TXR(1)

9.20.23 Functions struct-from-plist and struct-from-args
Syntax:

(struct-from-plist type {slot value}*)
(struct—-from-arg type arg*)

Description:
The struct-from-plist and struct-from-arg are interfaces to the make-struct

function.

The struct-from-plist function passes its slot and value arguments as the slot-
init-plist argument of make-struct. It passes no boa constructor arguments.

The struct-from-plist function calls make-struct with an empty slot-init-
plist, passing down the list of args.

The following equivalences hold:

(struct-from-plist a sO0 v0O sl v1 ...)
<--> (make-struct a (list sO0 v0O sl vl ...))

(struct-from-args a v0 vl v2 ...)
<--> (make-struct a nil v0 vl v2 ...)

9.20.24 Function allocate—-struct
Syntax:

(allocate—-struct type)

Description:
The allocate-struct provides a low-level allocator for structure objects.

The type argument must either be a st ruct—type object, or else a symbol which is the name
of a structure.

The allocate-struct creates and returns a new instance of type all of whose instance slots
take on the value nil. No initializations are performed. The struct type’s registered initialization
functions are not invoked.

9.20.25 Function copy-struct
Syntax:

(copy—-struct struct-obj)

Description:

The copy-struct function creates and returns a new object which is a duplicate of struct-
ob j, which must be a structure.

The duplicate object is a structure of the same type as st ruct —obj and has the same slot values.
The creation of a duplicate does not involve calling any of the struct type’s initialization functions.

Only instance slots participate in the duplication. Since the original structure and copy are of the
same structure type, they already share static slots.

Utility Commands 2021-07-12 275

TXR(1) TXR Programming Language TXR(1)

This is a low-level, "shallow" copying mechanism. If an object design calls for a higher level
cloning mechanism with deep copying or other additional semantics, one can be built on top of
copy-struct. For instance, a structure can have a copy method similar to the following:

(:method copy (me)
(let ((my-copy (copy-struct me)))
;7 inform the copy that it has been created
;7 by invoking its copied method.
my-copy. (copied)
my—-copy))

since this logic is generic, it can be placed in a base method. The copied method which it calls is
the means by which the new object is notified that it is a copy. This method takes on whatever spe-
cial responsibilities are required when a copy is produced, such as registering the object in various
necessary associations, or performing a deeper copy of some of the objects held in the slots.

The copied handler can be implemented at multiple levels of an inheritance hierarchy. The ini-
tial call to copied from copy will call the most derived override of that method.

To call the corresponding method in the base class, a given derived method can use the call-

super—fun function, or else the (meth ...) syntax in the first position of a compound form,
in place of a function name. Examples of both are given in the documentation for call-super—-
fun.

Thus derived structs can inherit the copy handling logic from base structs, and extend it with their
own.

9.20.26 Accessor slot
Syntax:

(slot struct-obj slot—-name)
(set (slot struct-obj slot—-name) new-value)

Description:
The slot function retrieves a structure’s slot. The struct-obj argument must be a structure,

and s1ot-name must be a symbol which names a slot in that structure.

Because slot is an accessor, a slot form is a syntactic place which denotes the slot’s storage
location.

A syntactic place expressed by s1ot does not support deletion.

9.20.27 Function slotset
Syntax:

(slotset struct-obj slot—name new-value)
Description:

The slotset function stores a value in a structure’s slot.
The struct-obj argument must be a structure, and sIlot-name must be a symbol which
names a slot in that structure.

The new—-value argument specifies the value to be stored in the slot.

Utility Commands 2021-07-12 276

TXR(1) TXR Programming Language TXR(1)

If a successful store takes place to an instance slot of struct-ob3j, then the dirty flag of that
object is set, causing the test—-dirty function to report true for that object.

The slotset function returns new—-value.

9.20.28 Functions test-dirty, clear-dirty and test-clear-dirty

Syntax:
(test-dirty struct-obj)
(clear—-dirty struct-obj)
(test—-clear-dirty struct-obj)
Description:

The test-dirty, clear—-dirty and test-clear-dirty functions comprise the interface
for interacting with structure dirty flags.

Each structure instance has a dirty flag. When this flag is set, the structure instance is said to be
dirty, otherwise it is said to be clean. A newly created structure is dirty. A structure remains dirty
until its dirty flag is explicitly reset. If a structure is clean, and one of its instance slots is overwrit-
ten with a new value, it becomes dirty.

The test-dirty function returns the dirty flag of struct-obj: t if struct-obj is dirty,
otherwise nil.

The clear-dirty function clears the dirty flag of struct-obj and returns struct-obj
itself.

The test-clear—-dirty flag combines these operations: it makes a note of the dirty flag of
struct-obj and clears it. Then it returns the noted value, t or nil.

9.20.29 Function st ructp
Syntax:

(structp obj)
Description:

The st ructp function returns t if objis a structure, otherwise it returns nil.

9.20.30 Function st ruct-type
Syntax:

(struct-type struct-obj)
Description:

The struct-type function returns the structure type object which represents the type of the
structure object instance st ruct-obj.

9.20.31 Function clear-struct
Syntax:

(clear-struct struct-obj [value])

Utility Commands 2021-07-12 277

TXR(1) TXR Programming Language TXR(1)

Description:
The clear-struct replaces all instance slots of st ruct-obj with value, which defaults to

nil if omitted.

Note that finalizers are not executed prior to replacing the slot values.

9.20.32 Function reset-struct
Syntax:

(reset—-struct struct-obj)

Description:

The reset-struct function reinitializes the structure object st ruct—-obj as if it were being
newly created. First, all the slots are set to nil as if by the clear-struct function. Then the
slots are initialized by invoking the initialization functions, in order of the supertype ancestry, just
as would be done for a new structure object created by make-struct with an empty slot—
init-plist and no boa arguments.

Note that finalizers registered against st ruct—obj are not invoked prior to the reset operation,
and remain registered.

If the structure has state which is cleaned up by finalizers, it is advisable to invoke them using
call-finalizers prior to using reset-struct, or to take other measures to deal with the
situation.

If the structure specifies : £ini handlers, then the reinitialization will cause these to registered,
just like when a new object it constructed. Thus if call-finalizers is not used prior to
reset-struct, this will result in the existence of duplicate registrations of the finalization
functions.

Finalizers registered against st ruct—obj are invoked if an exception is thrown during the reini-
tialization, just like when a new structure is being constructed.

9.20.33 Function replace—-struct
Syntax:

(replace-struct target-obj source-obj)

Description:

The replace-struct function causes target—-obj to take on the attributes of source-—
ob j without changing its identity.

The type of target—obj is changed to that of source-obj.

All instance slots of target-ob3j are discarded, and it is given new slots, which are copies of
the instance slots of source-obj.

Because of the type change, target-obj implicitly loses all of its original static slots, and
acquires those of source obj.

Note that finalizers registered against target—obj are not invoked, and remain registered. If

target-ob3j has state which is cleaned up by finalizers, it is advisable to invoke them using
call-finalizers prior to using replace-struct, or to take other measures to handle the

Utility Commands 2021-07-12 278

TXR(1)

TXR Programming Language TXR(1)
situation.
If the target—-obj and source-obj arguments are the same object, replace-struct has
no effect.
The return value is target—-obj.
9.20.34 Function method

(method struct-obj slot—-name curried-arg*)

Description:

The method function retrieves a function m from a structure’s slot and returns a new function
which binds that function’s left argument. If curried-arg arguments are present, then they are
also stored in the returned function. These are the curried arguments.

The struct-obj argument must be a structure, and slot—-name must be a symbol denoting a
slot in that structure. The slot must hold a function of at least one argument.

The function f which method function returns, when invoked, calls the function m previously
retrieved from the object’s slot, passing to that function struct-ob3j as the leftmost argument,
followed by the curried arguments, followed by all of £’s own arguments.

Note: the meth macro is an alternative interface which is suitable if the slot name isn’t a com-
puted value.

9.20.35 Function super—-method

(super—-method struct-obj slot-name)

Description:

The super-method function retrieves a function from a static slot belonging to one of the direct
supertypes of the structure type of struct-obj.

It then returns a function which binds that function’s left argument to the structure.

The struct-obj argument must be a structure which has at least one supertype, and slot—
name must be a symbol denoting a static slot in one of those supertypes. The slot must hold a
function of at least one argument. The supertypes are searched from left to right for a static slot
named sIot—-name; when the first such slot is found, its value is used.

The super-method function returns a function which, when invoked, calls the function previ-
ously retrieved from the supertype’s static slot, passing to that function st ruct-obj as the left-
most argument, followed by the function’s own arguments.

9.20.36 Function umethod

(umethod slot-name curried-arg*)

Utility Commands 2021-07-12 279

TXR(1)

TXR Programming Language TXR(1)

Description:

The umethod returns a function which represents the set of all methods named by the slot
slot—-name in all structure types, including ones not yet defined. The slot-name argument
must be a symbol.

If one or more curried-arg argument are present, these values represent the curried argu-
ments which are stored in the function object which is returned.

This returned function must be called with at least one argument. Its leftmost argument must be an
object of structure type, which has a slot named slot-name. The function will retrieve the value
of the slot from that object, expecting it to be a function, and calls it, passing to it the following
arguments: the object itself; all of the curried arguments, if any; and all of its remaining argu-
ments.

Note: the umethod name stands for "unbound method". Unlike the method function, umethod
doesn’t return a method whose leftmost argument is already bound to an object; the binding occurs
at call time.

9.20.37 Function uslot

Syntax:

(uslot slot—name)

Description:

The uslot returns a function which represents all slots named slIot-name in all structure
types, including ones not yet defined. The s1ot—-name argument must be a symbol.

The returned function must be called with exactly one argument. The argument must be a struc-
ture which has a slot named slot-name. The function will retrieve the value of the slot from
that object and return it.

Note: the uslot name stands for "unbound slot". The returned function isn’t bound to a particular
object. The binding of slot-name to a slot in the structure object occurs when the function is
called.

9.20.38 Function slots

Syntax:

(slots type)

Description:

The slots function returns a list of all of the slots of struct type type.

The t ype argument must be a structure type, or else a symbol which names a structure type.

9.20.39 Function slotp

Syntax:

(slotp type name)

Description:

The slotp function returns t if name name is a symbol which names a slot in the structure type
type. Otherwise it returns nil.

Utility Commands 2021-07-12 280

TXR(1) TXR Programming Language TXR(1)

The t ype argument must be a structure type, or else a symbol which names a structure type.

9.20.40 Function static-slot-p
Syntax:

(static—-slot-p type name)
Description:
The static-slot-p function returns t if name name is a symbol which names a slot in the

structure type type, and if that slot is a static slot. Otherwise it returns nil.

The t ype argument must be a structure type, or else a symbol which names a structure type.

9.20.41 Function static-slot
Syntax:

(static—-slot type name)
Description:
The static-slot function retrieves the value of the static slot named by symbol name of the

structure type type.

The type argument must be a structure type or a symbol which names a structure type, and name
must be a static slot of this type.

9.20.42 Function static-slot-set
Syntax:

(static—-slot-set type name new-value)
Description:
The static-slot-set function stores new-value into the static slot named by symbol
name of the structure type type.

It returns new-value.

The type argument must be a structure type or the name of a structure type, and name must be a
static slot of this type.

9.20.43 Function static-slot—-ensure
Syntax:

(static-slot-ensure type name new-value [no—-error-p])

Description:

The static-slot-ensure ensures, if possible, that the struct type type, as well as possibly
one or more struct types derived from it, have a static slot called name, that this slot is not shared
with a supertype, and that the value stored in it is new—-value.

Note: this function supports the redefinition of methods, as the implementation underlying the
defmeth macro; its semantics is designed to harmonize with expected behaviors in that usage.

The function operates as follows.

Utility Commands 2021-07-12 281

TXR(1) TXR Programming Language TXR(1)

If type itself already has an instance slot called name then an error is thrown, and the function
has no effect, unless a true argument is specified for the no—error—p Boolean parameter. In that
case, in the same situation, the function has no effect and simply returns new-value.

If t ype already has a non-inherited static slot called name then this slot is overwritten with new—
value and the function returns new-value. Types derived from type may also have this slot,
via inheritance; consequently, its value changes in those types also.

If type already has an inherited static slot called name then its inheritance is severed; the slot is
converted to a non-inherited static slot of type and initialized with new-value. Then all struct
types derived from type are scanned. In each such type, if the original inherited static slot is
found, it is replaced with the same newly converted static slot that was just introduced into type,
so that all these types now inherit this new slot from type rather than the original slot from some
supertype of type. These types all share a single instance of the slot with type, but not with
supertypes of type.

In the remaining case, type has no slot called name. The slot is added as a static slot to type.
Then it is added to every struct type derived from t ype which does not already have a slot by that
name, as if by inheritance. That is to say, types to which this slot is introduced share a single
instance of that slot. The value of the new slot is new—value, which is also returned from the
function. Any subtypes of type which already have a slot called name are ignored, as are their
subtypes.

9.20.44 Function static-slot—-home
Syntax:

(static-slot-home type name)
Description:
The static-slot-home method determines which structure type actually defines the static

slot name present in struct type type.

If type isn’t a struct type, or the name of a struct type, the function throws an error. Likewise, if
name isn’t a static slot of t ype.

If name is a static slot of type then the function returns a struct type name symbol which is
either then name of t ype itself, if the slot is defined specifically for t ype or else the most distant
ancestor of type from which the slot is inherited.

9.20.45 Function call-super—-method
Syntax:

(call-super-method struct-obj name argument*)
Description:
The call-super-method function is deprecated. Solutions involving call-super-

method should be reworked in terms of call-super—fun.

The call-super—-method retrieves the function stored in the static slot name of one of the
direct supertypes of struct-obj and invokes it, passing to that function struct-ob3j as the
leftmost argument, followed by the given arguments, if any.

The struct-obj argument must be of structure type. Moreover, that structure type must be
derived from one or more supertypes, and name must name a static slot available from at least one

Utility Commands 2021-07-12 282

TXR(1)

TXR Programming Language TXR(1)

of those supertypes. The supertypes are searched left to right in search of this slot.
The object retrieved from that static slot must be callable as a function, and accept the arguments.

Note that it is not correct for a method that is defined against a particular type to use call-
super-method to call the same method (or any other method) in the supertype of that particular
type. This is because call-super-method refers to the type of the object instance struct—
ob j, not to the type against which the calling method is defined.

9.20.46 Function call-super—fun

(call-super—-fun type name argument*)

Description:

The call-super—fun retrieves the function stored in the slot name of one of the supertypes of
type and invokes it, passing to that function the given arguments, if any.

The type argument must be a structure type. Moreover, that structure type must be derived from
one or more supertypes, and name must name a static slot available from at least one of those

supertypes. The supertypes are searched left to right in search of this slot.

The object retrieved from that static slot must be callable as a function, and accept the arguments.

Example:

Print a message and call supertype method:
(defstruct base nil)
(defstruct derived base)

(defmeth base fun (obj arg)
(format t "base fun method called with arg “s\n" arg))

(defmeth derived fun (obj arg)
(format t "derived fun method called with arg “s\n" arg)
(call-super-fun ’'derived ’'fun obj arg))

;; Interactive Listener:

1> (new derived). (fun 42)

derived fun method called with arg 42
base fun method called with arg 42

Note that a static method or function in any structure type can be invoked by using the (meth
.) name syntax in the first position of a compound form, as a function name. Thus, the above
derived fun can also be written:

(defmeth derived fun (obj arg)
(format t "derived fun method called with arg “s\n" arg)
((meth base fun) obj arg))

Utility Commands 2021-07-12 283

TXR(1) TXR Programming Language TXR(1)

9.20.47 Functions struct—get—initfun and struct-get-postinitfun
Syntax:

(struct—-get—-initfun type)
(struct—-get-postinitfun type)

Description:

The struct-get—initfun and struct-get-postinitfun functions retrieve, respec-
tively, a structure type’s initfun and postinit fun functions. These are the functions which
are initially configured in the call to make-struct-type via the initfun and postinit-
fun arguments.

Either one may be nil, indicating that the type has no initfunor postinitfun.

9.20.48 Functions struct—-set—-initfun and struct-set-postinitfun
Syntax:

(struct-set—-initfun type function)
(struct-set-postinitfun type function)

Description:

The struct-set-initfun and struct-set-postinitfun functions overwrite, respec-
tively, a structure type’s initfun and postinit fun functions. These are the functions which
are initially configured in the call to make—struct-type via the initfun and postinit-
fun arguments.

The function argument must either be nil or else a function which accepts one argument.

Note that initfun has the responsibility for all instance slot initializations. The defstruct
syntax compiles the initializing expressions in the slot specifier syntax into statements which are
placed into a function, which becomes the init fun of the struct type.

9.20.49 Macro with—-objects
Syntax:

(with-objects ({(sym init-form)}*) body-form*)
Description:

The with-objects macro provides a binding construct similar to let *.
Each sym must be a symbol suitable for use as a variable name.

Each init-form is evaluated in sequence, and a binding is established for its corresponding
sym which is initialized with the value of that form. The binding is visible to subsequent init—
forms.

Additionally, the values of the init—-forms are noted as they are produced. When the with-
objects form terminates, by any means, the call-finalizers function is invoked on each
value which was returned by an init-form and had been noted. These calls are performed in
the reverse order relative to the original evaluation of the forms.

After the variables are established and initialized, the body—-forms are evaluated in the scope of

the variables. The value of the last form is returned, or else nil if there are no forms. The invoca-
tions of call-finalizers take place just before the value of the last form is returned.

Utility Commands 2021-07-12 284

TXR(1) TXR Programming Language TXR(1)

9.21 Special Structure Functions

Special structure functions are user-defined methods or structure functions which are specially recognized
by certain functions in TXR Lisp. They endow structure objects with the ability to participate in certain
usage scenarios, or to participate in a customized way.

Special functions are required to bound to static slots, which is the case if the de fmeth macro is used, or
when methods or functions are defined using syntax inside a defstruct form. If a special function or
method is defined as an instance slot, then the behavior of library functions which depend on this method is
unspecified.

Special functions introduced below by the word "Method" receive an object instance as an argument. Their
syntax is indicated using the same notation which may be used to invoke them, such as:

object. (function-name arg ...)

However, those introduced as "Function" do not operate on an instance. Their syntax is likewise indicated
using the notation that may be used to invoke them:

"["object.function-name arg ...’ 1’

If such a invocation is actually used, the ob ject instance only serves for identifying the struct type whose
static slot function—name provides the function; object doesn’t participate in the call. An object is
not strictly required since the function can be called using

[(static-slot type ’function-name) arg ...]

which looks up the function in the struct t ype directly.

9.21.1 Method equal
Syntax:
object. (equal)
Description:
Normally, two struct values are not considered the same under the equal function unless they are

the same object.

However, if the equal method is defined for a structure type, then instances of that structure type
support equality substitution.

The equal method must not require any arguments other than object. Moreover, the method
must never return nil.

When a struct which supports equality substitution is compared using equal, less or
greater, its equal method is invoked, and the return value is used in place of that structure for
the purposes of the comparison.

The same applies when an struct is hashed using the hash—equal function, or implicitly by an
:equal-hash hash table.

Note: if an equal method is defined or redefined with different semantics for a struct type whose

instances have already been inserted as keys in an :equal-based hash table, the behavior of
subsequent insertion and lookup operations on that hash table becomes unspecified.

Utility Commands 2021-07-12 285

TXR(1) TXR Programming Language TXR(1)

9.21.2 Method print
Syntax:

object. (print stream pretty-p)
Description:
If a method named by the symbol print is defined for a structure type, then it is used for printing

instances of that type.

The stream argument specifies the output stream to which the printed representation is to be
written.

The pretty-p argument is a Boolean flag indicating whether pretty-printing is requested. Its
value may simply be passed to recursive calls to print, or used to select between ~s or ~a for-
matting if format is used.

The value returned by the print method is significant. If the special keyword symbol : (colon) is
returned, then the system will print the object in the default way, as if no print method existed:
it is understood that the method declined the responsibility for printing the object.

If any other value is returned, then it is understood that the method print method accepted the
responsibility for printing the object, and the system consequently will generate into st ream any
output output pertaining to ob ject’s representation.

9.21.3 Method lambda
Syntax:

object. (lambda arg*)
Description:

If a structure type provides a method called 1ambda then it can be used as a function.
This method can be called by name, using the syntax given in the above syntactic description.
However, the intended use is that it allows the structure instance itself to be used as a function.
When arguments are applied to a structure object as if it were a function, this is erroneous, unless
that object has a 1ambda method. In that case, the arguments are passed to the lambda method.
The leftmost argument of the method is the structure instance itself.
That is to say, the following equivalences apply, except that s is evaluated only once:

(call s args ...) <-—> s.(lambda args ...)

[s args ...] <—-—> [s.lambda s args ...]

(mapcar s list) <--> (mapcar (meth s lambda) list)

Note: a form such as [s args ...] where s is a structure can be treated as a place if the
method lambda-set is also implemented.

9.21.4 Method 1ambda-set
Syntax:

object. (lambda-set arg* new-value)

Utility Commands 2021-07-12 286

TXR(1) TXR Programming Language TXR(1)

Description:

The lambda-set method, in conjunction with a 1ambda method, allows structures to be used
as place accessors. If structure s supports a Iambda-set with four arguments, then the follow-
ing use of the dwim operator is possible:

(set [s a b c d] v)
(set (dwim s a b ¢ d) v) ;; precisely equivalently

This has an effect which can be described by the following code:

(progn
s s.(lambda-set a b ¢ d v)
V)

except that s and v are evaluated only once, and a through d are evaluated using the Lisp-1
semantics due the dwim operator.

If a place-mutating operator is used on this form which requires the prior value, such as the inc
macro, then the structure must support the 1ambda function also.

If lambda takes n arguments, then lambda-set should take n+/ arguments. The first n argu-
ments of these two methods are congruent; the extra rightmost argument of 1ambda-set is the
new value to be stored into the place denoted by the prior arguments.

The return value of lambda-set is ignored.

Note: the lambda-set method is also used by the rplaca function, if no rplaca method
exists.

Example
The following defines a structure with a single instance slot hash which holds a hash table, as

well as 1ambda and 1ambda—-set methods:

(defstruct hash-wrapper nil
(hash (hash))

(:method lambda (self key)
[self.hash keyl])

(:method lambda-set (self key new-val)
(set [self.hash key] new-val) self))

An instance of this structure can now be used as follows:

(let ((s (new hash-wrapper)))
(set [s "apple"] 3
[s "orange] 4)
[s "apple"]) —> 3

9.21.5 Method 1ength
Syntax:

object. (length)

Utility Commands 2021-07-12 287

TXR(1)

TXR Programming Language TXR(1)

Description:

If a structure has Length method, then it can be used as an argument to the 1ength function.

Structures which implement the methods 1ambda, lambda-set and length can be treated as
abstract vector-like sequences, because such structures support the ref, refset and length
functions.

For instance, the nreverse function will operate on such objects.

Note: a structure which supports the car method also supports the 1ength function, in a differ-
ent way. Such a structure is treated by length as a list-like sequence, and its length is measured
by walking the sequence with cdr operations. If a structure supports both length and car,
preference is given to 1length, which is likely to be much more efficient.

9.21.6 Methods car, cdr and nullify

Syntax:
object. (car)
object. (cdr)
object. (nullify)
Description:

Structures may be treated as sequences if they define methods named by the symbols car, cdr,
and nullify.

If a structure supports these methods, then these methods are used by the functions car, cdr,
nullify, empty and various other sequence manipulating functions derived from them, when
those functions are applied to that object.

An object which implements these three methods can be considered to represent a list-like abstract
sequence.

The object’s car method should return the first value in that abstract sequence, or else nil if that
sequence is empty.

The object’s cdr method should return an object denoting the remainder of the sequence, or else
nil if the sequence is empty or contains only one value. This returned object can be of any type:
it may be of the same structure type as that object, a different structure type, a list, or whatever
else. If a non-sequence object is returned.

The nullify method should return nil if the object is considered to denote an empty sequence.
Otherwise it should either return that object itself, or else return the sequence which that object
represents.

9.21.7 Methods rplaca and rplacd

Syntax:

object. (rplaca new-car-value)
object. (rplacd new-cdr-value)

Description:

If a structure type defines the methods rplaca and rplacd then, respectively, the rplaca and
rplacd functions will use these methods if they are applied to instances of that type.

Utility Commands 2021-07-12 288

TXR(1)

TXR Programming Language TXR(1)

That is to say, when the function call (rplaca o v) is evaluated, and o is a structure type, the
function inquires whether o supports a rplaca method. If so, then, effectively, o. (rplaca
v) 1is invoked. The return value of this method call is ignored; rplaca returns o. The analogous
requirements apply to rplacd in relation to the rplacd method.

Note: if the rplaca method doesn’t exist, the rplaca function falls back on trying to store
new—car-value by means of the structure type’s lambda-set method, using an index of
zero. That is to say, if the type has no rplaca method, but does have a lambda-set method,
then o. (lambda-set 0 v) isinvoked.

9.21.8 Function from-1ist

"[’"object.from-1list Iist’]’

Description:

If a from-11ist structure function is defined for a structure type, it is called in certain situations
with an argument which is a list object. The function’s purpose is to construct a new instance of
the structure type, derived from that list.

The purpose of this function is to allow sequence processing operations such as mapcar and
remove to operate on a structure object as if it were a sequence, and return a transformed
sequence of the same type. This is analogous to the way such functions can operate on a vector or
string, and return a vector or string.

If a structure object behaves as a sequence thanks to providing car, cdr and nullify methods,
but does not have a from-1ist function, then those sequence-processing operations which
return a sequence will always return a plain list of items.

9.21.9 Function derived

"["object.derived supertype subtype’l’

Description:

If a structure type supports a function called derived, this function is called whenever a new
type is defined which names that type as its supertype.

The function is called with two arguments which are both struct types. The supertype argu-
ment gives the type that is being inherited from. The subt ype gives the new type that is inherit-
ing from supertype.

When a new structure type is defined, its list of immediate supertypes is considered. For each of
those supertypes which defines the derived function, the function is invoked.

The function is not retroactively invoked. If it is defined for a structure type from which subtypes
have already been derived, it is not invoked for those existing subtypes.

If derived directly inherits supertype more than once, it is not specified whether this func-
tion is called once, or multiple times.

Note: the supertype parameter exists because the derived function is itself inherited. If the
same version of this function is shared by multiple structure types due to inheritance, this argu-
ment informs the function which of those types it is being invoked for.

Utility Commands 2021-07-12 289

TXR(1)

TXR Programming Language TXR(1)

9.21.10 Methods iter-begin and iter-reset

Syntax:

object. (iter-begin)
object. (iter-reset iter)

Description:

If an object supports the iter-begin method, it is considered iterable; the iterable function
will return t if invoked on this object.

The responsibility of the iter-begin method is to return an iterator object: an object which
supports certain special methods related to iteration, according to one of two protocols, described
below.

The iter-reset method is optional. It is similar to iter-begin but takes an additional
iter argument, an iterator object that was previously returned by the iter-begin method of
the same ob ject.

If iter-reset determines that iter can be reused for a new iteration, then it can suitably
mutate the state of iter and return it. Otherwise, it behaves like iter—-begin and returns a
new iterator.

There are two protocols for iteration: the fast protocol, and the canonical protocol. Both protocols
require the iterator object returned by the iter-begin method to provide the methods iter-
itemand iter-step. If the iterator also provides the iter-more method, then the protocol
which applies is the canonical protocol. If that method is absent, then the fast protocol is followed.

Under the fast protocol, the iter-more method does not exist and is not involved. The iterable
object’s iter—-begin method must return nil if the abstract sequence is empty. If an iterator is
returned, it is assumed that an object can be retrieved from the iterator by invoking its iter-
item method. The iterator’s iter-next method should return nil if there are no more objects
in the abstract sequence, or else it should return an iterator that obeys the fast protocol (possibly
itself).

Under the canonical protocol, the iterator implements the iter-more function. The iterable
object’s iter-begin always returns an iterator object. The iterator object’s iter-more
method is always invoked to determine whether another item is available from the sequence. The
iterator object’s iter—step method is expected to return an iterator object which conforms to
the canonical protocol.

9.21.11 Method iter-item

Syntax:

object. (iter—-item)

Description:

The iter—item method is invoked on an iterator object to retrieve the next item in the
sequence.

Under the fast protocol, it is assumed that if object was returned by an iterable object’s iter—
begin method, or by an iterator’s iter—step method, that an item is available. This method

will be unconditionally invoked.

Under the canonical protocol for iteration, the iter-more method will be invoked on object

Utility Commands 2021-07-12 290

TXR(1)

TXR Programming Language TXR(1)

first. If that method yields true, then iter-item is expected to yield the next available item in
the sequence.

Note: calls to the iter—item function, with ob ject as its argument, invoke the iter—item
method. It is possible for an application to call iter—item through this function or directly as a
method call without first calling iter-more. No iteration mechanism in the TXR Lisp standard
library behaves this way. If the iterator object has no more items available and iter-more is
invoked anyway, no requirements apply to its behavior or return value.

9.21.12 Method iter-step

object. (iter—-step)

Description:

The iter-step method is invoked on an iterator object to produce an iterator object for the
remainder of the sequence, excluding the current item.

Under the fast iteration protocol, this method returns nil if there are no more items in the
sequence.

Under the canonical iteration protocol, this method always returns an iterator object. If no items
remain in the sequence, then that iterator object’s iter-more method returns nil. Further-
more, under this protocol, iter—step is not called if iter-more returns nil.

Note: calls to the iter—step function, with ob ject as its argument, invoke the iter-step
method. It is possible for an application to call iter-step through this function or directly as a
method call without first calling iter-more. No iteration mechanism in the TXR Lisp standard
library behaves this way. If the iterator ob ject has no more items available and iter-step is
invoked anyway, no requirements apply to its behavior or return value.

9.21.13 Method iter-more

object. (iter—-more)

Description:

If an iterator object returned by iter-begin supports the iter-more method, then the
canonical iteration protocol applies to that iteration session. All subsequent iterators that are
involved in the iteration are assumed to conform to the protocol and should implement the iter-
more method also. The behavior is unspecified otherwise.

The iter-more method is used to interrogate an iterator whether more unvisited items remain in
the sequence. This method does not advance the iteration, and does not change the state of the iter-
ator. It is idempotent: if it is called multiple times without any intervening call to any other
method, it yields the same value.

If an iterator does not implement the iter-more method, then if the iter-more function is
applied to that iterator, it unconditionally returns t.

9.22 Sequence Manipulation

Functions in this category uniformly manipulate abstract sequences. Lists, strings and vectors are
sequences.

Utility Commands 2021-07-12 291

TXR(1) TXR Programming Language TXR(1)

Structure objects can behave like sequences, either list-like or vector-like sequences, if they have certain
methods: see the previous section Special Structure Functions.

Moreover, hash tables behave like sequences of key-value entries represented by cons pairs. Not all
sequence-processing functions accept hash-table sequences.

Additionally, some sequence-processing functions work not only with sequences but with all iterable
objects: objects that can be used as arguments to the iter-begin function. Such arguments are called
iterable rather than sequence, possibly abbreviated to iter with or without a numeric suffix. Hash
tables are always supported if they appear as iterable arguments.

9.22.1 Function seqgp
Syntax:
(segp object)
Description:
The function seqp returns t if object is a sequence, otherwise nil.

Lists, vectors and strings are sequences. The object nil denotes the empty list and so is a
sequence.

Objects of type buf and carray are sequences, as are hash tables.
Structures which implement the 1ength or car methods are considered sequences.

No other objects are sequences. However, future revisions of the language may specify additional
objects that are sequences.

9.22.2 Function iterable
Syntax:

(iterable object)
Description:

The iterable function returns t if ob ject is iterable, otherwise nil.
If object is a sequence according to the seqgp function, then it is iterable.
If object is a structure which supports the iter—-begin method, then it is iterable.

Additional objects that are not sequences are also iterable: numeric or character ranges, and num-
bers. Future revisions of the language may specify additional iterable objects.

9.22.3 Function make-1like
Syntax:
(make-like 1list object)
Description:
The 1ist argument must be a list. If object is a sequence type, then 1ist is converted to the

same type of sequence and returned. Otherwise the original 11ist is returned.

Conversion is supported to string and vector type.

Utility Commands 2021-07-12 292

TXR(1) TXR Programming Language TXR(1)

Conversion to a structure type is possible for structures. If object is an object of a structure type
which has a static function from—-1ist, then make-1ike calls that function, passing to it, and
the resulting value is returned. I11ist and returns whatever value that function returns.

If object is a carray, then 1ist is passed to the carray-1ist function, and the resulting
value is returned. The second argument in the carray-1ist call is the element type taken from
object. The third argument is nil, indicating that the resulting carray is not to be null termi-
nated.

Note: the make-1ike function is a helper which supports the development of unoptimized ver-
sions of a generic function that accepts any type of sequence as input, and produces a sequence of
the same type as output. The implementation of such a function can internally accumulate a list,
and then convert the resulting list to the same type as an input value by using make-1ike.

9.22.4 Functions 1ist-seq, vec—-segand str-seq

Syntax:
(list-seq iterable)
(vec—-seq iterable)
(str-seq iterable)
Description:

The 1ist-seq, vec—-seq and str-seq functions convert an iterable object of any type into a
list, vector or string, respectively.

The list returned by 1ist-seqis lazy.

The 1ist-seq and vec—seq iterate the items of iterable and accumulate these items into a
new list or vector.

The str-seq similarly iterates the items of iterable, requiring them to be a mixture of char-
acters and strings.

9.22.5 Functions length and 1len
Syntax:

(length iterable)
(len iterable)

Description:

The length function returns the number of items contained in i terable.
The len function is a synonym of length.

An attempt to calculate the length of infinite lazy lists will not terminate. Iterable objects repre-
senting infinite ranges, such as integers and characters are invalid arguments.

9.22.6 Function empty
Syntax:

(empty iterable)

Utility Commands 2021-07-12 293

TXR(1) TXR Programming Language TXR(1)

Description:
If iterable is a suitable argument for the length function, then the empty Returns t if
(length iterable) is zero, otherwise nil.
The empty function also supports certain objects not suitable as arguments for 1ength.

An infinite lazy list is not empty, and so empty returns nil for such an object.

The function also returns nil for iterable objects representing nonempty spaces, even if those
spaces are infinite. For instance (empty O0) yields nil because the set of integers beginning
with 0 isn’t empty.

9.22.7 Function nullify
Syntax:

(nullify iterable)
Description:

The nullify function returns nil if iterable denotes an empty sequence. Otherwise, if
iterable is not an empty sequence, or isn’t a sequence, then iterable itself is returned.

If iterable is a structure object which supports the nullify method, then that method is
called. If it returns nil then nil is returned. If the nullify method returns a substitute object
other than the iterable object itself, then nullify is invoked on that returned substitute
object.

Note: the nullify function is a helper to support unoptimized generic traversal of sequences.
Thanks to the generalized behavior of cdr, non-list sequences can be traversed using cdr, simi-
larly to proper lists, by checking for cdr returning the terminating value nil. However, empty
non-list sequences are handled incorrectly because since they are not the nil object, they look
nonempty under this paradigm of traversal. The nullify function provides a correction: if the
input sequence is filtered through nullify then the subsequent list-like iteration works correctly.

Examples:
;7 Incorrect for empty strings:
(defun print-chars (string)
(while string
(prinl (pop string))))
;7 Corrected with nullify:
(defun print-chars (string)
(let ((s (nullify string)))
(while s

(prinl (pop s)))))

Note: optimized generic iteration is available in the form of iteration based on iter-begin
rather than car/cdr and nullify.

Examples:

;; Efficient with iterators,

Utility Commands 2021-07-12 294

TXR(1) TXR Programming Language TXR(1)

;7 at the cost of verbosity:

(defun print-chars (string)
(let ((i (iter-begin string)))
(while (iter-more 1i)
(prinl (iter-item s))
(set s (iter-step s)))))

;7 Using mapping function built on iterators:

(defun print-chars (string)
[mapdo prinl stringl)

9.22.8 Accessor sub
Syntax:

(sub sequence [from [to]l])
(set (sub sequence [from [tol]) new-val)

Description:

The sub function extracts a slice from input sequence sequence. The slice is a sequence of the
same type as sequence.

If the from argument is omitted, it defaults to 0. If the to parameter is omitted, it defaults to t.
Thus (sub a) means (sub a 0 t).

The following semantic equivalence exists between a call to the sub function and the DWIM-
bracket syntax, except that sub is an ordinary function call form, which doesn’t apply the Lisp-1

evaluation semantics to its arguments:

;; from is not a list
(sub seq from to) <--> [seqg from..to]

The description of the dwim operator—in particular, the section on Range Indexing—explains the
semantics of the range specification.

The output sequence may share structure with the input sequence.
If sequenceis a carray object, then the function behaves like carray-sub.
If sequenceis a buf object, then the function behaves like buf-sub.

If sequenceis a tree object, then the function behaves like sub-tree. Note: because sub-
tree is not an accessor, assigning to the sub syntax in this case will produce an error.

If sequence is a structure, it must support the lambda method. The sub operation is trans-
formed into a call to the 1ambda method according to the following equivalence:

(sub o from to) <--> o.(lambda (rcons from to))
(sub o : to) <-—=> o. (lambda (rcons : to))
(sub o from) <--> o. (lambda (rcons from :))
(sub o) <-—> o. (lambda (rcons : :))

That is to say, the from and to arguments are converted to range object. If either argument is

Utility Commands 2021-07-12 295

TXR(1) TXR Programming Language TXR(1)

missing, the : (colon) keyword symbol is used for the corresponding element of the range.

When a sub form is used as a syntactic place, that place denotes a slice of seq. The seq argu-
ment must be itself be syntactic place, because receives a new value, which may be different from
its original value in cases when seqis a list.

Overwriting that slice is equivalent to using the replace function. The following equivalences
give the semantics, except that x, a, b and v are evaluated only once, in left-to-right order:

(set (sub x a b) v) <—-—> (progn (set x (replace x v a b))
V)

(del (sub x a b)) <-—> (progl (sub x a b)
(set x (replace x nil a b)))

Note that the value of x is overwritten with the value returned by replace. If x is a vector or
string, then the return value of replace is just x: the identity of the object doesn’t change under
mutation. However, if x is a list, its identity changes when items are added to or removed from the
front of the list, and in those cases replace will return a value different from its first argument.
Similarly, if x is an object with a 1ambda-set method, that method’s return value becomes the
return value of replace and must be taken into account.

9.22.9 Function replace
Syntax:

(replace sequence replacement-sequence [from [to]])
(replace sequence replacement-sequence index—1ist)

Description:

The replace function modifies sequence in the ways described below.

The operation is destructive: it may work "in place" by modifying the original sequence. The caller
should retain the return value and stop relying on the original input sequence.

The return value of replace is the modified version of sequence. This may be the same
object as sequence or it may be a newly allocated object.

Note that the form:
(set seq (replace seq new fr to))
has the same effect on the variable seq as the form:
(set [seg fr..to] new)

except that the former set form returns the entire modified sequence, whereas the latter returns
the value of the new argument.

The replace function has two invocation styles, distinguished by the type of the third argument.
If the third argument is a sequence, then it is deemed to be the index—11ist parameter of the
second form. Otherwise, if the third argument is missing, or is not a list, then it is deemed to be

the from argument of the first form.

The first form of the replace function replaces a contiguous subsequence of the sequence with

Utility Commands 2021-07-12 296

TXR(1)

TXR Programming Language TXR(1)

replacement-sequence. The replaced subsequence may be empty, in which case an inser-
tion is performed. If replacement-sequence is empty (for example, the empty list nil),
then a deletion is performed.

If the fromand to arguments are omitted, their values default to 0 and t respectively.

The description of the dwim operator—in particular, the section on Range Indexing—explains the
semantics of the range specification.

The second form of the replace function replaces a subsequence of elements from sequence
given by index-11st, with their counterparts from replacement-sequence. This form of
the replace function does not insert or delete; it simply overwrites elements. If replacement—-
sequence and index-11ist are of different lengths, then the shorter of the two determines the
maximum number of elements which are overwritten. Whenever a negative value occurs in
index-1ist the length of sequence is added to that value. Furthermore, similar restrictions
apply on index-Iist as under the select function. Namely, the replacement stops when an
index value in index—11ist is encountered which is out of range for sequence. furthermore,
if sequence is a list, then index-11ist must be monotonically increasing, after consideration
of the displacement of negative values.

If replacement-sequence shares storage with the target range of sequence, or, in the case
when that range is resized by the replace operation, shares storage with any portion of
sequence above that range, then the effect of replace on either object is unspecified.

If sequenceis acarray object, then replace behaves like carray-replace.

If sequenceis abuf object, then replace behaves like buf-replace.

If sequence is a structure, then the structure must support the lambda-set method. The
replace operation is translated into a call of the 1ambda-set method according to the follow-

ing equivalences:

(replace o items from to)
<--=> 0. (lambda-set (rcons from to) items)

(replace o items index-1list)
<-=> o. (lambda-set index-list items)

Thus, the from and to arguments are converted to single range object, whereas an index-1ist
is passed as-is. It is an error if the from argument is a sequence, indicating an index-11ist,
and a to argument is also given; the situation is diagnosed. If either from or to are omitted, the
range object contains the : (colon) keyword symbol in the corresponding place:

(replace o items from)

<--> 0. (lambda-set (rcons from :) items)
(replace o items : to)
<--> 0. (lambda-set (rcons : to) items)

(replace o items)
<--=> 0. (lambda-set (rcons : :) items)

It is the responsibility of the object’s lambda-set method to implement semantics consistent
with the description of replace.

Utility Commands 2021-07-12 297

TXR(1) TXR Programming Language TXR(1)

9.22.10 Function take
Syntax:
(take count sequence)
Description:
The take function returns sequence with all except the first count items removed.

If sequence is a list, then take returns a lazy list which produces the first count items of
sequence.

For other kinds of sequences, including lazy strings, t ake works eagerly.

If count exceeds the length of sequence then a sequence is returned which has all the items.
This object may be sequence itself, or a copy.

If count is negative, it is treated as zero.

9.22.11 Functions take-while and take-until
Syntax:

(take-while predfun sequence [keyfun])
(take-until predfun sequence [keyfun])

Description:
The take-while and take-until functions return a prefix of sequence whose items sat-

isfy certain conditions.

The take-while function returns the longest prefix of sequence whose elements, accessed
through keyfun satisty the function predfun.

The keyfun argument defaults to the identity function: the elements of sequence are examined
themselves.

The take-until function returns the longest prefix of sequence which consists of elements,
accessed through keyfun, that do not satisfy predfun followed by an element which does sat-
isfy predfun. If sequence has no such prefix, then an empty sequence is returned of the same
kind as sequence.
If sequence is a list, then these functions return a lazy list.

9.22.12 Function drop

Syntax:

(drop count sequence)
Description:

The drop function returns sequence with the first count items removed.
If count is negative, it is treated as zero.
If count is zero, then sequence is returned.

If count exceeds the length of sequence then an empty sequence is returned of the same kind

Utility Commands 2021-07-12 298

TXR(1) TXR Programming Language TXR(1)

as sequence.

9.22.13 Functions drop-while and drop—-until
Syntax:

(drop-while predfun sequence [keyfun])
(drop-until predfun sequence [keyfun])

Description:

The drop-while and drop-until functions return sequence with a prefix of that sequence
removed, according to conditions involving predfun and keyfun.

The drop-while function removes the longest prefix of sequence whose elements, accessed
through keyfun satisfy the function predfun, and returns the remaining sequence.

The keyfun argument defaults to the identity function: the elements of sequence are examined
themselves.

The drop—until function removes the longest prefix of sequence which consists of elements,
accessed through keyfun, that do not satisfy predfun followed by an element which does sat-
isfy predfun. A sequence of the remaining elements is returned.

If sequence has no such prefix, then a sequence same as sequence is returned, which may be
sequence itself or a copy.

9.22.14 Accessor last
Syntax:

(last sequence [num])
(set (last sequence [num]) new-value)

Description:

The Iast function returns a subsequence of sequence consisting of the last num of its ele-
ments, where num defaults to 1.

If num s zero or negative, then an empty sequence is returned. If numis positive, and greater than
or equal to the length of sequence, then sequence sequence is returned.

If a 1ast form is used as a place, then sequence must be a place. The following equivalence
gives the semantics of assignment to a last:

(set (last x n) v) <=—=> (set (sub x (- (max n 0)) t) wv)

A last place is deletable. The semantics of deletion may be understood in terms of the following
equivalence:

(del (last x n)) <——> (del (sub x (- (max n 0)) t))

9.22.15 Accessor but last
Syntax:

(butlast sequence [num])

Utility Commands 2021-07-12 299

TXR(1) TXR Programming Language TXR(1)

(set (butlast sequence [num]) new-value)

Description:

The butlast function returns the prefix of sequence consisting of a copy of it, with the last
num items removed.

The parameter num defaults to 1 if an argument is omitted.
If sequence is empty, an empty sequence is returned.
If num is zero or negative, then sequence is returned.

If num is positive, and meets or exceeds the length of sequence, then an empty sequence is
returned.

If a butlast form is used as a place, then sequence must itself be a place. The following
equivalence gives the semantics of assignment to a last:

(set (butlast x n) v) <——> (set (sub x 0 (- (max n 0))) wv)

A butlast place is deletable. The semantics of deletion may be understood in terms of the fol-
lowing equivalence:

(del (last x n)) <—=> (del (sub x 0 (- (max n 0))))

Note: the TXR Lisp take function also computes the prefix of a list; however, it counts items
from the beginning, and provides lazy semantics which allow it to work with infinite lists.

See also: the but 1lastn accessor, which operates on lists. That function has useful semantics for
improper lists and treats an atom as the terminator of a zero-length improper list.

Dialect Note: a destructive function similar to Common Lisp’s nbutlast isn’t provided. Assign-
ment to a but last form is destructive; Common Lisp doesn’t support but last as a place.

9.22.16 Function 1diff
Syntax:

(1diff sequence tail-sequence)
Description:

The 1diff function is a somewhat generalized version of the same-named classic Lisp function
found in traditional Lisp dialects.

The 1diff function supports the original 1diff semantics when both inputs are lists. It deter-
mines whether the tail-sequence list is a structural suffix of sequence, which is to say: is
tail-sequence one of the cons cells which comprise sequence? If so, then a list is
returned consisting of all the items of sequence before tail-sequence: a copy of
sequence with the tail-sequence part removed, and replaced by the nil terminator. If
tail-sequenceis nil or the lists are unrelated, then sequence is returned.

The TXR Lisp 1di £ function supports the following additional semantics.

1. The basic description of 1diff is extended to work with list-like sequences, not merely
lists; that is to say, objects which support the car method.

Utility Commands 2021-07-12 300

TXR(1) TXR Programming Language TXR(1)

2. If sequence is any kind of sequence, and tail-sequence is any kind of empty
sequence, then sequence is returned.

If either argument is an atom that is not a sequence, 1diff returns sequence.

4. If sequence is a list-like sequence, and tail-sequence isn’t, then the terminating
atom of sequence is determined. This atom is compared using equal to the tail-
sequence object. If they are equal, then a proper list is returned containing the items of
sequence excluding the terminating atom.

5. If both arguments are vector-like sequences, then 1diff determines whether
sequence has a suffix which is equal to tail-sequence. If this is the case, then a
sequence is returned, of the same kind as sequence, consisting of the items of
sequence before that suffix. If tail-sequence is not equal to a suffix of
sequence, then sequence is returned.

6. In all other cases, sequence and tail-sequence are compared with equal. If the
comparison is true, nil is returned, otherwise sequence is returned.

Examples:

;77 unspecified: the compiler could make

;ii (2 3) a suffix of (1 2 3),

;77 or they could be separate objects.

(1diff (1 2 3) " (2 3)) —-> either (1) or (1 2 3)

;; b is the (1 2) suffix of a, so the 1diff is (1)
(let* ((a "(1 2 3)) (b (cdr a)))

(1diff a b))
> (1)

; Rule 5: strings and vector

(Ldiff "abc" "bc") -> "a"
(1diff "abc" nil) -> "abc"
(1diff #(1 2 3) #(3)) —> #(1 2)

;7 Rule 5: mixed vector kinds

(1diff "abc" # (#\b #\c)) -> "abc"

;; Rule 6:

(1diff #(1 2 3) "(3)) -> #(1 2 3)

;7 Rule 4:

(1diff "(1 2 3) #(3)) -> " (1 2 3)

(1diff (1 2 3 #(3)) #(3)) —> (1 2 3)
(1diff (1 2 3 4) #(3)) —> (1 2 3 4)
;; Rule 6

(1diff 1 2) -> 1
(1diff 1 1) -> nil

9.22.17 Function search
Syntax:

(search haystack needle [testfun [keyfun]])

Utility Commands 2021-07-12 301

TXR(1)

TXR Programming Language TXR(1)

Description:

The search function determines whether the sequence needle occurs as substring within
haystack, under the given comparison function test fun and key function keyfun. If this is
the case, then the zero-based position of the leftmost occurrence of key within haystack is
returned. Otherwise nil is returned to indicate that key does not occur within haystack. If
key is empty, then zero is always returned.

The arguments haystack and needle are sequences. They may not be hash tables.

If needle is not empty, then it occurs at some position N within haystack if the first element
of needle matches the element at position N of haystack, the second element of needle
matches the element at position N+1 of haystack and so forth, for all elements of needle. A
match between elements is determined by passing each element through keyfun, and then com-
paring the resulting values using test fun.

If test fun is supplied, it must be a function which can be called with two arguments. If it is not
supplied, it defaults to eql.

If keyfun is supplied, it must be a function which can be called with one argument. If it is not
supplied, it defaults to identity.

Examples:

;; fails because 3.0 doesn’t match 3
;7 under the default eqgl function
[search #(1.0 3.0 4.0 7.0) (3 4)] -> nil

;7 occurrence found at position 1:
;5 (3.0 4.0) matches (3 4) under =
[search #(1.0 3.0 4.0 7.0) "(3 4) =1 —> 1

;77 "even odd odd odd even" pattern
;; matches at position 2
[search #(1 1 2 35 7 8) "(2 111 2) : evenp] -> 2

;7 Case insensitive string search
[search "abcd" "CD" : chr-toupper] -> 2

;; Case insensitive string search
;7 using vector of characters as key
[search "abcd" # (#\C #\D) : chr-toupper] -> 2

9.22.18 Function contains

Syntax:

(contains needle haystack [testfun [keyfun]])

Description:

The syntax of the contains function differs from that of search: that the needie and
haystack arguments are reversed. The semantics is identical.

Utility Commands 2021-07-12 302

TXR(1)

TXR Programming Language TXR(1)

9.22.19 Function rsearch

Syntax:

(rsearch haystack needle [testfun [keyfun])

Description:

The rsearch function is like search except for two differences.

Firstly, if needle matches haystack in multiple places, rsearch returns the rightmost
matching position rather than the leftmost.

Secondly, if needle is an empty sequence, then rsearch returns the length of haystack,
thereby effectively declaring that the rightmost match for an empty needle key occurs at the
imaginary position past the element of haystack.

9.22.20 Functions ref and refset

Syntax:

(ref sequence index)
(refset sequence index new-value)

Description:

The ref and refset functions perform array-like indexing into sequences, as well as objects of
type buf and carray.

If the sequence parameter is a hash, then these functions perform has retrieval and storage; in
that case index isn’t restricted to an integer value.

If sequence is a structure, it supports ref directly if it has a 1lambda method. The index
argument is passed to that method, and the resulting value is returned. If a structure lacks a
lambda method, but has a car method, then ref treats it as a list, traversing the structure using
car/cdr operations. In the absence of support for these operations, the function fails with an
error exception.

Similarly, a structure supports refset directly if it has a lambda-set method. This gets called
with index and new-value as arguments. Then new—-value is returned. If a structure lacks a
lambda-set method, then refset treats it as a list, traversing the structure using car/cdr
operations, and storing new-value using rplaca. In the absence of support for these opera-
tions, the function fails with an error exception.

The ref function retrieves an element of sequence, whereas refset overwrites an element of
sequence with a new value.

If sequence is a sequence then index argument must be an integer. The first element of the
sequence is indexed by zero. Negative values are permitted, denoting backward indexing from the
end of the sequence, such that the last element is indexed by -1, the second last by -2 and so on.
See also the Range Indexing section under the description of the dwim operator.

If sequenceis a list, then out-of-range indices, whether positive or negative, are treated leniently
by ref: such accesses produce the value nil, rather than an error. For other sequence types, such
accesses are erroneous. For hashes, accesses to nonexistent elements are treated leniently, and pro-
duce nil.

If sequence is a search tree, then ref behaves like tree—-1lookup. The refset function is

Utility Commands 2021-07-12 303

TXR(1)

TXR Programming Language TXR(1)

not supported by search trees.

The refset function is strict for out-of-range indices over all sequences, including lists. In the
case of hashes, a refset of a nonexistent key creates the key.

The refset function returns new—-value.

The following equivalences hold between ref and refset, and the DWIM bracket syntax, pro-
vided that idx is a scalar index and sequence is a sequence object, rather than a hash.

(ref seq idx) <--> [seq idx]
(refset seq idx new) <--> (set [seq idx] new)
The difference is that ref and refset are first class functions which can be used in functional

programming as higher order functions, whereas the bracket notation is syntactic sugar, and set
is an operator, not a function. Therefore the brackets cannot replace all uses of ref and refset.

9.22.21 Function update

(update sequence function)

Description:

The update function replaces each elements in sequence in a hash table, with the result of
function being applied to that element value.

The sequence is returned.

The sequence may be a hash table. In that case, function is invoked with each hash value,
which is replaced with the function’s return value.

9.22.22 Functions remqg, remgl and remqual

(remg object sequence [key-function])
(remgl object sequence [key-function])
(remqual object sequence [key-function])

Description:

The remg, remgl and remqgual functions produce a new sequence based on sequence,
removing the elements whose associated keys are eq, eql or equal to object.

The input sequence is unmodified, but the returned sequence may share substructure with it. If
no items are removed, it is possible that the return value is sequence itself.

If key—-function is omitted, then the element keys compared to object are the elements
themselves. Otherwise, key—function is applied to each element and the resulting value is that
element’s key which is compared to object.

9.22.23 Functions remg*, remgl * and remqual*

Utility Commands 2021-07-12 304

TXR(1) TXR Programming Language TXR(1)
(remg* object sequence)
(remgl* object sequence)
(remqual* object sequence)
Description:
The remg*, remgl* and remqual* functions are lazy analogs of remg, remgl and
remqual. Rather than computing the entire new sequence prior to returning, these functions
return a lazy list.
Caution: these functions can still get into infinite looping behavior. For instance, in (remgl* 0
(repeat ' (0))), remgl will keep consuming the 0 values coming out of the infinite list,
looking for the first item that does not have to be deleted, in order to instantiate the first lazy value.
Examples:

;7 Return a list of all the natural numbers, excluding 13,
;; then take the first 100 of these.

;7 If remgl is used, it will loop until memory is exhausted,
;; because (range 1) is an infinite list.

[(remgl* 13 (range 1)) 0..100]

9.22.24 Functions keepqg, keepqgl and keepqual

Syntax:
(keepg object sequence [key-function])
(keepgl object sequence [key-function])
(keepqual object sequence [key—function])
Description:

The keepq, keepqgl and keepqual functions produce a new sequence based on sequence,
removing the items whose keys are not eq, eql or equal to object.

The input sequence is unmodified, but the returned sequence may share substructure with it. If
no items are removed, it is possible that the return value is sequence itself.

The optional key—-function is applied to each element from the sequence to convert it to a
key which is compared to object. If key-function is omitted, then each element itself of
sequence is compared to object.

9.22.25 Functions remove—1if, keep—if, separate, remove-if* and keep—-if*

Syntax:
(remove—-if predicate-function sequence [key-function])
(keep-if predicate-function sequence [key-function])
(separate predicate-function sequence [key-function])
(remove—-if* predicate-function sequence [key—-function])
(keep-if* predicate-function sequence [key-function])
Description:

The remove-1if function produces a sequence whose contents are those of sequence but with
those elements removed which satisfy predicate-function. Those elements which are not
removed appear in the same order. The result sequence may share substructure with the input
sequence, and may even be the same sequence object if no items are removed.

Utility Commands 2021-07-12 305

TXR(1)

TXR Programming Language TXR(1)

The optional key-function specifies how each element from the sequence is transformed to
an argument to predicate-function. If this argument is omitted then the predicate function
is applied to the elements directly, a behavior which is identical to key—function being (fun
identity).

The keep—1f function is exactly like remove—1f£, except the sense of the predicate is inverted.
The function keep—if retains those items which remove-if will delete, and removes those
that remove—1f will preserve.

The separate function combines keep—if and remove-if into one, returning a list of two
elements whose car and cadr are the result of calling keep—-1if and remove-1f, respectively,
on sequence (with the predicate-function and key-function arguments passed
through). One of the two elements may share substructure with the input sequence, and may even
be the same sequence object if all items are either kept or removed (in which case the other ele-
ment will be nil).

Note: the separate function may be understood in terms of the following reference implemen-
tation:

(defun separate (pred seqg : (keyfun :))
[(juxt (op keep-if pred @1 keyfun)
(op remove-if pred @1 keyfun))
seq])

The remove—1if* and keep—-if* functions are like remove—-if and keep-if, but produce
lazy lists.

Examples:

;; remove any element numerically equal to 3.
(remove—-if (op = 3) (1 2 3 4 3.0 5)) -> (1 2 4 5)

;; remove those pairs whose first element begins with "abc"
[remove-if (op equal [Q@1 0..3] "abc")

" (("abcd" 4) ("defg" 5))

car]
-> (("defg" 5))

;7 equivalent, without test function

(remove—-if (op equal [(car @1) 0..3] "abc")
" (("abcd" 4) ("defg" 5)))

_> (("defg" 5))

9.22.26 Functions countqual, countqgl and countqg

Syntax:
(countqg object iterable)
(countgl object iterable)
(countqual object iterable)
Description:

The countq, countgl and countqual functions count the number of objects in iterable
which are eq, eql or equal to object, and return the count.

Utility Commands 2021-07-12 306

TXR(1)

TXR Programming Language TXR(1)

9.22.27 Function count-if

Syntax:

(count—-if predicate-function iterable [key-function])

Description:

The count-if function counts the number of elements of iterable which satisfy predi-
cate-function and returns the count.

The optional key—function specifies how each element from iterable is transformed to an
argument to predicate-function. If this argument is omitted then the predicate function is
applied to the elements directly, a behavior which is identical to key—-function being (fun
identity).

9.22.28 Functions posqg, posgl and posqual

Syntax:
(posg object sequence)
(posgl object sequence)
(posqual object sequence)
Description:

The posqg, posgl and posqual functions return the zero-based position of the first item in
sequence which is, respectively, eq, eql or equal to object.

9.22.29 Functions pos and pos—1if

Syntax:

(pos key sequence [testfun [keyfun]ll])
(pos—if predfun sequence [keyfun])

Description:

The pos and pos—if functions search through sequence for an item which matches key, or
satisfies the predicate function predfun, respectively. They return the zero-based position of the
matching item.

The keyfun argument specifies a function which is applied to the elements of sequence to pro-
duce the comparison key. If this argument is omitted, then the untransformed elements of
sequence are examined.

The pos function’s test fun argument specifies the test function which is used to compare the
comparison keys from sequence to key. If this argument is omitted, then the equal function
is used. The position of the first element sequence whose comparison key (as retrieved by
keyfun) matches the search (under test fun) is returned. If no such element is found, nil is
returned.

The pos—-if function’s predfun argument specifies a predicate function which is applied to the
successive comparison keys taken from sequence by applying keyfun to successive elements.
The position of the first element for which predfun yields true is returned. If no such element is
found, nil is returned.

9.22.30 Functions rposqg, rposql, rposqual, rpos and rpos—if

Utility Commands 2021-07-12 307

TXR(1) TXR Programming Language TXR(1)

Syntax:
(rposg object sequence)
(rposgl object sequence)
(rposqual object sequence)
(rpos key sequence [testfun [keyfun]l])
(rpos—-if predfun sequence [keyfun])
Description:

These functions are counterparts of rposqg, rposql, rposqual, rpos and rpos—if which
report position of the rightmost matching item, rather than the leftmost.

9.22.31 Functions pos-max and pos—-min
Syntax:

(pos—max sequence [testfun [keyfunl]])
(pos—min sequence [testfun [keyfun]])

Description:

The pos-min and pos-max functions implement exactly the same algorithm; they differ only in
their defaulting behavior with regard to the test fun argument. If testfun is not given, then
the pos—max function defaults test fun to the greater function, whereas pos—min defaults
it to the 1ess function.

If sequence is empty, both functions return nil.

Without a test fun argument, the pos—max function finds the zero-based position index of the
numerically maximum value occurring in sequence, whereas pos—-min without a testfun
argument finds the index of the minimum value.

If a test fun argument is given, the two functions are equivalent. The test fun function must
be callable with two arguments. If test fun behaves like a greater-than comparison, then pos-—
max and pos—min return the index of the maximum element. If test fun behaves like a 1ess—
than comparison, then the functions return the index of the minimum element.

The keyfun argument defaults to the identity function. Each element from sequence is
passed through this one-argument function, and the resulting value is used in its place.

If a sequence contains multiple equivalent maxima, whether the position of the leftmost or right-
most such maximum is reported depends on whether test fun compares for strict inequality, or
whether it reports true for equal arguments also. Under the default test fun, which is less, the
pos-max function will return the position leftmost of a duplicate set of maximum elements. To
find the rightmost of the maxima, the 1equal function can be substituted. Analogous reasoning
applies to other test functions.

9.22.32 Function mismatch
Syntax:

(mismatch left-seq right-seq [testfun [keyfun]l])

Description:

The mismatch function compares corresponding elements from the sequences left-seq and
right-segq, returning the position at which the first mismatch occurs.

Utility Commands 2021-07-12 308

TXR(1) TXR Programming Language TXR(1)

If the sequences are of the same length, and their corresponding elements are the same, then nil
is returned.

If one sequence is shorter than the other, and matches a prefix of the other, then the mismatching
position returned is one position after the last element of the shorter sequence, the same value as
its length. An empty sequence is a prefix of every sequence.

The keyfun argument defaults to the identity function. Each element from sequence is
passed to keyfun and the resulting value is used in its place.

After being converted through keyfun, items are then compared using testfun, which must
accept two arguments, and defaults to equal.

9.22.33 Function where
Syntax:
(where function iterable)
Description:
If iterableis a sequence, the where function returns a lazy list of the numeric indices of those

of its elements which satisfy function. The numeric indices appear in increasing order.

If iterable is a hash, the following special behavior applies: where returns a lazy list of of
keys which have values which satisfy function. These keys are not subject to an order.

function must be a function that can be called with one argument. For each element of iter—
able, function is called with that element as an argument. If a non-nil value is returned,
then the zero-based index of that element is added to a list. Finally, the list is returned.

9.22.34 Function rmismatch
Syntax:

(rmismatch left-seq right-seq [testfun [keyfun]l])

Description:

Similarly to mismatch, the rmismatch function compares corresponding elements from the
sequences left-seq and right-seq, returning the position at which the first mismatch
occurs. All of the arguments have the same semantics as that of mismatch.

Unlike mismatch, rmismatch compares the sequences right-to-left, finding the suffix which
they have in common, rather than prefix.

If the sequences match, then nil is returned. Otherwise, a negative index is returned giving the
mismatching position, regarded from the end. If the sequences match only in the rightmost ele-
ment, then -1 is returned. If they match in two elements then -2 and so forth.

9.22.35 Functions starts-with and ends-with
Syntax:

(starts-with short-seq long-seq [testfun [keyfunl])
(ends-with short-seq long-seq [testfun [keyfun]l])

Utility Commands 2021-07-12 309

TXR(1) TXR Programming Language TXR(1)

Description:

The starts-with and ends-with functions compare corresponding elements from
sequences short-seqgand long-seq.

The starts—-with function returns t if short-seq is prefix of Iong-seq; otherwise, it
returns nil.

The ends—-with function returns t if short-seqis suffix of 1ong-segq; otherwise, it returns
nil.

Element from both sequences are mapped to comparison keys using keyfun, which defaults to
identity.

Comparison keys are compared using test fun which defaults to equal.

9.22.36 Function select
Syntax:

(select sequence {index-list | function})
Description:

The select function returns a sequence, of the same kind as sequence, which consists of
those elements of sequence which are identified by the indices in index—11ist, which may be
a list or a vector.

If functionis given instead of index-11ist, then function is invoked with sequence as
its argument. The return value is then taken as if it were the index—11st argument .

If sequence is a sequence, then index—1ist consists of numeric indices. The length of the
sequence, as reported by the length function, is added to every index-1ist value which is
negative. The select function stops collecting values upon encountering an index value which
is greater than or equal to the length of the sequence. (Rationale: without this strict behavior,
select would not be able to terminate if index—11ist is infinite.)

If sequence is, more specifically, a list-like sequence, then index-11ist must contain mono-
tonically increasing numeric values, even if no value is out of range, since the select function
makes a single pass through the list based on the assumption that indices are ordered. (Rationale:
optimization.) This requirement for monotonicity applies to the values which result after negative
indices are displaced by the sequence length Also, in this list-like sequence case, values taken
from index-1ist which are still negative after being displaced by the sequence length are
ignored.

If sequence is a hash, then index-I11ist is a list of keys. A new hash is returned which con-
tains those elements of sequence whose keys appear in index-1ist. All of index-1istis
processed, even if it contains keys which are not in sequence. The nonexistent keys are
ignored.

The select function also supports objects of type carray, in a manner similar to vectors. The

indicated elements are extracted from the input sequence, and a new carray is returned whose
storage is initialized by converting the extracted values back to the foreign representation.

Utility Commands 2021-07-12 310

TXR(1) TXR Programming Language TXR(1)

9.22.37 Function re ject
Syntax:

(reject sequence {index-1list | function})
Description:

The reject function returns a sequence, of the same kind as sequence, which consists of all
those elements of sequence which are not identified by the indices in index—-1ist, which
may be a list or a vector.

If functionis given instead of index-11ist, then function is invoked with sequence as
its argument. The return value is then taken as if it were the 1ndex—11st argument .

If sequence is a hash, then index-1ist represents a list of keys. The reject function
returns a duplicate of the hash, in which the keys specified in index—11ist do not appear.

Otherwise if sequence is a vector-like sequence, then the behavior of reject may be under-
stood by the following equivalence:

(reject seqg idx) --> (make-like
[apply append (split* seq idx)]
seq)

where it is to be understood that seq is evaluated only once.
If sequenceis a list, then, similarly, the following equivalence applies:

(reject seqg idx) --> (make-like
[apply append* (split* seq idx)]
seq)

The input sequence is split into pieces at the indicated indices, such that the elements at the indices
are removed and do not appear in the pieces. The pieces are then appended together in order, and
the resulting list is coerced into the same type of sequence as the input sequence.

9.22.38 Function relate
Syntax:

(relate domain-seq range-seq [default-vall)
Description:

The relate function returns a one-argument function which implements the relation formed by
mapping the elements of domain-seq to the positionally corresponding elements of range-—
seq. That is to say, the function searches through the sequence domain-seq to determine the
position where its argument occurs, using equal as the comparison function. Then it returns the
element from that position in the range-seq sequence. This returned function is called the rela-
tion function.

If the relation function’s argument is not found in domain-seq, then the behavior depends on
the optional parameter default-val. If an argument is given for default-val, then the

relation function returns that value. Otherwise, the relation function returns its argument.

Note: the relate function may be understood in terms of the following equivalences:

Utility Commands 2021-07-12 311

TXR(1) TXR Programming Language TXR(1)

(relate d r) <--> (lambda (arg)
(iflet ((p (posqual arg d)))
[r pl
arg))

(relate d r v) <—=> (lambda (arg)
(iflet ((p (posqual arg d)))
[r pl
v))

Note: relate may return a hash table instead of a function, if such an object can satisfy the
semantics required by the arguments.

Examples:
(mapcar (relate "_" "-") "foo_bar") -> "foo-bar"

(mapcar (relate "0123456789" "ABCDEFGHIJ"™ "X") "139D-345")
—> "BJDXXDEFEF"

(mapcar (relate ’ (nil) " (0)) "(nil 1 2 nil 4)) -> (0 1 2 0 4)

9.22.39 Function in
Syntax:

(in sequence key [testfun [keyfun]])
(in hash key)

Description:
The in function tests whether key is found inside sequence or hash.

If the test fun argument is specified, it specifies the function which is used to comparison keys
from the sequence to key. Otherwise the equal function is used.

If the keyfun argument is specified, it specifies a function which is applied to the elements of
sequence to produce the comparison keys. Without this argument, the elements themselves are
taken as the comparison keys.

If the object being searched is a hash, then if neither of the arguments keyfun nor test fun is
specified, in performs a hash lookup for key, returning t if the key is found, nil otherwise. If
either of keyfun or test fun is specified, then in performs an exhaustive search of the hash ta-
ble, as if it were a sequence of cons cells whose car fields are keys, and whose cdr keys are
values. Thus to search by key, the car function must be specified as key fun.

The in function returns t if it finds key in sequence or hash, otherwise nil.

9.22.40 Function partition
Syntax:

(partition sequence {index-list | index | function})

Description:

If sequence is empty, then partition returns an empty list, and the second argument is
ignored; if it is function, it is not called.

Utility Commands 2021-07-12 312

TXR(1)

TXR Programming Language TXR(1)

Otherwise, partition returns a lazy list of partitions of sequence. Partitions are consecutive,
non-overlapping, nonempty substrings of sequence, of the same kind as sequence, such that
if these substrings are catenated together in their order of appearance, a sequence equal to the
original is produced.

If the second argument is of the form index-1ist, or if an index—11ist was produced from
the index or function arguments, each value in that list must be an integer. Each integer value
which is nonnegative specifies the index position given by its value. Each integer value which is
negative specifies an index position given by adding the length of sequence to its value. The
sequence index positions thus denoted by index—1ist shall be strictly nondecreasing. Each
successive element is expected to designate an index position at least as high as all previous ele-
ments, otherwise the behavior is unspecified. Leading index positions which are (still) negative, or
zero, are effectively ignored.

If index—-11st is empty then a one-element list containing the entire sequence is returned.

If index-11ist is an infinite lazy list, the function shall terminate if that list eventually produces
an index position which is greater than or equal to the length of sequence.

If the second argument is a function, then this function is applied to sequence, and the return
value of this call is then used in place of the second argument, which must be a single index value,
which is then taken as if it were the index argument, or else a list of indices, which are taken as
the index—-11ist argument.

If the second argument is an atom other than a function, it is assumed to be an integer index, and is
turned into an index-11ist of one element.

After the index—11ist is obtained as an argument, or determined from the index or func-
tion arguments, the partition function then divides sequence according to the indices
given by that list. The first partition begins with the first element of sequence. The second par-
tition begins at the first position in index-I1ist, and so on. Indices beyond the length of the
sequence are ignored, as are indices less than or equal to zero.

Examples:

(partition " (1 2 3) 1) => ((1) (2 3))

;7 split the string where there is a "b"
(partition "abcbcbd" (op where (op eql #\b))) -> ("a" "bc"
"bc" "bd")

9.22.41 Functions split and split*

Syntax:

(split sequence {index-1list | index | function})
(split* sequence {index-1list | index | function})

Description:

If sequence is empty, then both split and split* return an empty list, and the second argu-
ment is ignored; if it is funct ion, itis not called.

Otherwise, split returns a lazy list of pieces of sequence: consecutive, non-overlapping, pos-
sibly empty substrings of sequence, of the same kind as sequence. A catenation of these
pieces in the order they appear would produce a sequence that is equal to the original sequence.

Utility Commands 2021-07-12 313

TXR(1) TXR Programming Language TXR(1)

The split* function differs from split in that the elements indicated by the split indices are
removed.

The index, index—1ist, and function arguments are subject to the same restrictions and
treatment as the corresponding arguments of the partition function, with the following differ-
ence: the index positions indicated by index—1ist are required to be strictly increasing, rather
than nondecreasing.

If the second argument is of the form index-1ist, or if an index—11ist was produced from
the index or function arguments, then the split function divides sequence according to
the indices indicated in the list. The first piece always begins with the first element of sequence.
Each subsequent piece begins with the position indicated by an element of index-1ist. Nega-
tive indices are ignored. If index-11ist includes index zero, then an empty first piece is gener-
ated. If index—-11ist includes an index greater than or equal to the length of sequence (equiv-
alently, an index beyond the last element of the sequence) then an additional empty last piece is
generated. The length of sequence is added to any negative indices. An index which is still neg-
ative after being thus displaced is discarded.

Note: the principal difference between split and partition is that partition does not
produce empty pieces.

Examples:

(split " (1 2 3) 1) —> ((1) (2 3))

(split "abc" 0) —> ("" "abc")

(split "abc" 3) —> ("abc" "")

(split "abc" 1) -> ("a" "bc")

(split "abc" 7 (0 1 2 3)) —-> ("" "a" "pr menomw)
(split "abc" /(1 2)) -> ("a" "b" "c")

(Split "abc" 14 (_1 1 2 15)) —> ("a" "b" "c")

;; triple split at makes two additional empty pieces
(Split "abc" 14 (1 1 1)) _> ("a" nn nn "bc")

(split* "abc" 0) -> ("" "bc") ;; "a" is removed

;7 all characters removed
(Split* "abc" I(O 1 2)) -> ("" o onw "")

9.22.42 Function partition*
Syntax:
(partition* sequence {index-list | index | function})
Description:
If sequence is empty, then partition* returns an empty list, and the second argument is

ignored; if it is function, it is not called.

The index, index—1ist, and function arguments are subject to the same restrictions and
treatment as the corresponding arguments of the partition function, with the following differ-
ence: the index positions indicated by index—1ist are required to be strictly increasing, rather
than nondecreasing.

Utility Commands 2021-07-12 314

TXR(1)

TXR Programming Language TXR(1)

If the second argument is of the form index—-1ist, then partition* produces a lazy list of
pieces taken from sequence. The pieces are formed by deleting from sequence the elements
at the positions given in index—11ist, such that the pieces are the remaining nonempty sub-
strings from between the deleted elements, maintaining their order.

If index—-11ist is empty then a one-element list containing the entire sequence is returned.

Examples:

(partition* (1 2 3 4 5) (0 2 4)) -> ((2) (4))
(partition* "abed" ' (0 3)) -> "bc"

(partition* "abcd™ (0 1 2 3)) -> nil

9.22.43 Functions find, find-if and find-true

Syntax:
(find key sequence [testfun [keyfunll])
(find-if predfun {sequence | hash} [keyfun])
(find-true predfun {sequence | hash} [keyfun])
Description:

The find and £ind-1f functions search through a sequence for an item which matches a key, or
satisfies a predicate function, respectively. The find-true function is a variant of find-if
which returns the value of the predicate function instead of the item.

The keyfun argument specifies a function which is applied to the elements of sequence to pro-
duce the comparison key. If this argument is omitted, then the untransformed elements of the
sequence are searched.

The £ind function’s test fun argument specifies the test function which is used to compare the
comparison keys from sequence to the search key. If this argument is omitted, then the equal
function is used. The first element from the list whose comparison key (as retrieved by keyfun)
matches the search (under test fun) is returned. If no such element is found, nil is returned.

The find-if function’s predfun argument specifies a predicate function which is applied to
the successive comparison keys pulled from the list by applying keyfun to successive elements.
The first element for which predfun yields true is returned. If no such element is found, nil is
returned.

In the case of find-if, a hash table may be specified instead of a sequence. The hash is
treated as if it were a sequence of hash key and hash value pairs represented as cons cells, the car
slots of which are the hash keys, and the cdr of which are the hash values. If the caller doesn’t
specify a key fun then these cells are taken as their keys.

The find-true function’s argument conventions and search semantics are identical to those of
find-1if, but the return value is different. Instead of returning the found item, find-true
returns the value which predfun returned for the found item’s key.

9.22.44 Functions rfind and rfind-if

Syntax:

(rfind key sequence [testfun [keyfunll])

Utility Commands 2021-07-12 315

TXR(1)

TXR Programming Language TXR(1)

(rfind-if predfun {sequence | hash} [keyfun])

Description:

The rfind and rfind-if functions are almost exactly like find and £ind-1if except that if
there are multiple matches for key in sequence, they return the rightmost element rather than
the leftmost.

In the case of rfind-if when a hash is specified instead of a sequence, the function
searches through the hash entries in the same order as £ind-1f, but finds the last match rather
than the first. Note: hashes are inherently not ordered; the relative order of items in a hash table
can change when other items are inserted or deleted.

9.22.45 Functions find-max and find-min

Syntax:

(find-max {sequence | hash} [testfun [keyfun]l])
(find-min {sequence | hash} [testfun [keyfun]l])

Description:

The find-min and find-max function implement exactly the same algorithm; they differ only
in their defaulting behavior with regard to the testfun argument. If testfun is not given,
then the £ind-max function defaults it to the greater function, whereas £ind-min defaults
it to the 1ess function.

Without a testfun argument, the find-max function finds the numerically maximum value
occurring in sequence, whereas pos—-min without a testfun argument finds the minimum
value.

If a test fun argument is given, the two functions are equivalent. The test fun function must
be callable with two arguments. If testfun behaves like a greater-than comparison, then
find-max and find-min both return the maximum element. If test fun behaves like a less-
than comparison, then the functions return the minimum element.

The keyfun argument defaults to the identity function. Each element from sequence is
passed through this one-argument function, and the resulting value is used in its place for the pur-
poses of the comparison. However, the original element is returned.

A hash table may be specified instead of a sequence. The hash is treated as if it were a sequence
of hash key and hash value pairs represented as cons cells, the car slots of which are the hash
keys, and the cdr of which are the hash values. If the caller doesn’t specify a key fun then these
cells are taken as their keys. To find the hash table’s key-value cell with the maximum key, the
car function can be specified as keyfun. To find the entry holding the maximum value, the cdr
function can be specified.

If there are multiple equivalent maxima, then under the default test fun, that being less, the
leftmost one is reported. See the notes under pos-max regarding duplicate maxima.

9.22.46 Functions uni, isec,diff and symdiff

Syntax:

uni iterl iterl [testfun [keyfun]l])
isec iterl iterl [testfun [keyfunll])
diff iterl iterl [testfun [keyfun]l])
symdiff iterl iter2 [testfun [keyfun]l])

—~ e~~~

Utility Commands 2021-07-12 316

TXR(1) TXR Programming Language TXR(1)

Description:

The functions uni, isec, diff and symdiff treat the sequences iterl and iter?2 as if they
were sets.

They, respectively, compute the set union, set intersection, set difference and symmetric difference
of iterl and iter2, returning a new sequence.

The arguments iterl and iter2 need not be of the same kind. They may be hash tables.

The returned sequence is of the same kind as iterl. If iterl is a hash table, the returned
sequence is a list.

For the purposes of these functions, an input which is a hash table is considered as if it were a
sequence of hash key and hash value pairs represented as cons cells, the car slots of which are the
hash keys, and the cdr of which are the hash values. This means that if no keyfun is specified,
these pairs are taken as keys.

Since the input sequences are defined as representing sets, they are assumed not to contain dupli-
cate elements. These functions are not required, but may, de-duplicate the sequences.

The union sequence produced by uni contains all of the elements which occur in both iterl
and iter2. If a given element occurs exactly once only in iterl or exactly once only in
iter2, or exactly once in both sequences, then it occurs exactly once in the union sequence. If a
given element occurs at least once in either iterl, iterZ2 or both, then it occurs at least once in
the union sequence.

The intersection sequence produced by isec contains all of the elements which occur in both
iterl and iter2. If a given element occurs exactly once in iterl and exactly once in
iter2, then in occurs exactly once in the intersection sequence. If a given element occurs at least
once in iterl and at least once in iter2, then in occurs at least once in the intersection
sequence.

The difference sequence produced by diff contains all of the elements which occur in iterl
but do not occur in iter2. If an element occurs exactly once in iterl and does not occur in
iter2, then it occurs exactly once in the difference sequence. If an element occurs at least once
in iterl and does not occur in iter2, then it occurs at least once in the difference sequence. If
an element occurs at least once in iter2, then it does not occur in the difference sequence.

The symmetric difference sequence produced by symdi f £ contains all of the elements of iterl
which do not occur in iter2 and vice versa: it also contains all of the elements of i ter2 which
do not occurin iterl.

Element equivalence is determined by a combination of testfun and keyfun. Elements are
compared pairwise, and each element of a pair is passed through keyfun function to produce a
comparison value. The comparison values are compared using test fun. If keyfun is omitted,
then the untransformed elements themselves are compared, and if test fun is omitted, then the
equal function is used.

Note: a function similar to diff named set-diff exists. This became deprecated starting in
TXR 184. For the set-diff function, the requirement was specified to preserve the original
order of items from iterl that survive into the output sequence. This requirement is not docu-
mented for the diff function, but is de facto honored by the implementation for at as long as the
set—-diff synonym continues to be available. The set-diff function doesn’t support hash
tables and is inefficient for vectors and strings.

Utility Commands 2021-07-12 317

TXR(1) TXR Programming Language TXR(1)

Note: these functions are not efficient for the processing of hash tables, even when both inputs are
hashes, the keyfun argument is car, and test fun matches the equality used by both hash-ta-
ble inputs. If applicable, the operations hash-uni, hash-isec and hash-diff should be
used instead.

9.22.47 Functions mapcar, mappend, mapcar* and mappend*
Syntax:

mapcar function iterable¥*)

mappend function iterable¥*)
mapcar* function iterable¥*)
mappend* function iterable¥*)

—~ e~~~

Description:

When given only one argument, the mapcar function returns nil. function is never called.

When given two arguments, the mapcar function applies function to each elements of iter—
able and returns a sequence of the resulting values in the same order as the original values. The
returned sequence is the same kind as i terable, if possible. If the accumulated values cannot be
elements of that type of sequence, then a list is returned.

When additional sequences are given as arguments, this filtering behavior is generalized in the fol-
lowing way: mapcar traverses the sequences in parallel, taking a value from each sequence as an
argument to the function. If there are two lists, function is called with two arguments and so
forth. The traversal is limited by the length of the shortest sequence. The return values of the
function are collected into a new sequence which is returned. The returned sequence is of the same
kind as the leftmost input sequence, unless the accumulated values cannot be elements of that type
of sequence, in which case a list is returned.

The mappend function works like mapcar, with the following difference. Rather than accumu-
lating the values returned by the function into a sequence, mappend expects the items returned by
the function to be sequences which are catenated with append, and the resulting sequence is
returned. The returned sequence is of the same kind as the leftmost input sequence, unless the val-
ues cannot be elements of that type of sequence, in which case a list is returned.

The mapcar* and mappend* functions work like mapcar and mappend, respectively. How-
ever, they return lazy lists rather than generating the entire output list prior to returning.

Caveats:

Like mappend, mappend* must "consume" empty lists. For instance, if the function being
mapped puts out a sequence of nils, then the result must be the empty list nil, because
(append nil nil nil nil ...) isnil.

But suppose that mappend* is used on inputs which are infinite lazy lists, such that the function
returns nil values indefinitely. For instance:

;7 Danger: infinite loop!!!
(mappend* (fun identity) (repeat ’ (nil)))

The mappend* function is caught in a loop trying to consume and squash an infinite stream of
nils, and so doesn’t return.

Utility Commands 2021-07-12 318

TXR(1)

TXR Programming Language TXR(1)

Examples:

;; multiply every element by two
(mapcar (lambda (item) (* 2 item)) (1 2 3)) -> (4 6 8)

7; "zipper" two lists together
(mapcar (lambda (le ri) (list le ri)) (1 2 3) '(a b c))
-> " ((1 a) (2 b) (3 c)))

;7 like append, mappend allows a lone atom or a trailing atom:
(mappend (fun identity) 3) -> (3)
(mappend (fun identity) ' ((1) 2)) -> (1 . 2)

;7 take just the even numbers
(mappend (lambda (item) (if (evenp x) (list x))) (1 2 3 4 5))
-> (2 4)

9.22.48 Functions maprod, maprend and maprodo

Syntax:
(maprod function iterable*)
(maprend function iterable*)
(maprodo function iterable*)
Description:

The maprod, maprend and maprodo functions resemble mapcar, mappend and mapdo,
respectively. When given no iterable arguments or exactly one iterable argument, they
behave exactly like those three functions.

When two or more iterable arguments are present, maprod differs from mapcar in the fol-
lowing way, as do the remaining functions from their aforementioned counterparts. Whereas
mapcar iterates over the iterable values in parallel, taking successive tuples of element val-
ues and passing them to function, the maprod function iterates over all combinations of ele-
ments from the sequences: the Cartesian product. The prod suffix stands for "product”.

If one or more iterable arguments specify an empty sequence, then the Cartesian product is
empty. In this situation, function is not called. The result of the function is then nil converted
to the same kind of sequence as the leftmost iterable.

The maprod function collects the values into a list just as mapcar does. Just like mapcar, it
converts the resulting list into the same kind of sequence as the leftmost iterable argument, if
possible. For instance, if the resulting list is a list or vector of characters, and the leftmost i ter-
able is a character string, then the list or vector of characters is converted to a character string
and returned.

The maprend function ("map product through function and append") iterates the i terable ele-
ment combinations exactly like maprod, passing them as arguments to function. The values
returned by function are then treated exactly as by the mappend function. The return values
are expected to be sequences which are appended together as if by append, and the final result is
converted to the same kind of sequence as the leftmost i terable if possible.

The maprodo function, like mapdo, ignores the result of function and returns nil.

The combination iteration gives priority to the rightmost iterable, which means that the right-
most element of each generated tuple varies fastest: the tuples are traversed in "rightmost major"

Utility Commands 2021-07-12 319

TXR(1) TXR Programming Language TXR(1)

order. This is made clear in the examples.

Examples

[maprod list (0 1 2) ’'(a b) " (i ii iii)]

->

((0 a i) (0 a ii) (0 a iii) (0 b i) (0 b ii) (0 b iii)
(1 a i) (1 a ii) (1 a iii) (1 b i) (1 b ii) (1 b iii)
(2 a i) (2 a ii) (2 a iii) (2 b i) (2 b ii) (2 b iii))

;7 Vectors #(#\a #\x) #(#\a #\y) ... are appended

;; together resulting in # (#\a #\x #\a #\y ...)
;; which is converted to a string:

[maprend vec "ab" "xy"] -> "axaybxby"
;7 One of the sequences is empty, so the product is an

;7 empty sequence of the same kind as the leftmost
;7 sequence argument, thus an empty string:

[maprend vec "ab" n "] _> nn
9.22.49 Function mapdo
Syntax:

(mapdo function iterable*)
Description:

The mapdo function is similar to mapcar, but always returns nil. It is useful when function
performs some kind of side effect, hence the "do" in the name, which is a mnemonic for the execu-
tion of imperative actions.

When only the function argument is given, function is never called, and nil is returned.

If a single iterable argument is given, then mapdo iterates over iterable, invoking func-
tion on each element.

If two or more iterable arguments are given, then mapdo iterates over the sequences in paral-
lel, extracting parallel tuples of items. These tuples are passed as arguments to function, which
must accept as many arguments as there are sequences.

9.22.50 Functions transpose and zip
Syntax:
(transpose iterable)
(zip iterable¥*)
Description:

The transpose function performs a transposition on iterable. This means that the elements
of iterable must be iterable. These iterables are understood to be columns; transpose
exchanges rows and columns, returning a sequence of the rows which make up the columns. The
returned sequence is of the same kind as iterable, and the rows are also the same kind of
sequence as the first column of the original sequence. The number of rows returned is limited by
the shortest column among the sequences.

Utility Commands 2021-07-12 320

TXR(1)

TXR Programming Language TXR(1)

All of the input sequences (the elements of iterable) must have elements which are compatible
with the first sequence. This means that if the first element of iterable is a string, then the
remaining sequences must be strings, or else sequences of characters, or of strings.

The zip function takes variable arguments, and is equivalent to calling t ranspose on a list of
the arguments. The following equivalences hold:

(zip . x) <-—> (transpose x)

l[apply zip x] <--> (transpose x)

Examples:

;; transpose list of lists
(transpose " ((a b c) (c de))) —> ((ac) (bd) (ce))

;7 transpose vector of strings:

;7 — string columns become string rows
;7 — vector input becomes vector output
(transpose # ("abc" "def" "ghij")) -> #("adg" "beh" "cfi")

;; error: transpose wants to make a list of strings
;; but 1 is not a character
(transpose # ("abc" "def" ' (1 2 3))) ;; error!

;7 String elements are catenated:
(transpose # ("abc" "def" ("UV" "XY" "WZ")))
_> # (n adUV" "beXY n "cfwz n)

;7 Transpose list of ranges
(transpose (list 1..4 4..8 8..12))
-> ((1 4 8) (25 9) (3 6 10))

(zip "(a b c) "(cde)) > ((ac) (bd (ce))

9.22.51 Functions window-map, window—mappend and window-mapdo

Syntax:
(window—map range boundary function sequence)
(window-mappend range boundary function sequence)
(window-mapdo range boundary function sequence)
Description:

The window-map and window-mappend functions process the elements of sequence by
passing arguments derived from each successive element to function. Both functions return, if
possible, a sequence of the same kind as sequence, otherwise a list.

Under window-map, values returned by function are accumulated into a sequence of the
same type as sequence and that sequence is returned. Under window-mappend, the values
returned by the calls to function are expected to be sequence which are appended together to
form the output sequence.

These functions are analogous to mapcar and mappend. Unlike these, they operate only on a
single sequence, and over this sequence they perform a sliding window mapping, whose

Utility Commands 2021-07-12 321

TXR(1)

TXR Programming Language TXR(1)

description follows.

The function window-mappend avoids accumulating a sequence, and instead returns nil; it is
analogous to mapdo.

The argument to the range parameter must be a positive integer, not exceeding 512. This param-
eter specifies the amount of ahead/behind context on either side of each element which is pro-
cessed. It indirectly determines the window size for the mapping. The window size is twice
range, plus one. For instance if range is 2, then the window size is 5: the element being pro-
cessed lies at the center of the window, flanked by two elements on either side, making five.

The function argument must specify a function which accepts a number of arguments corre-
sponding to the window size. For instance if range is 2, making the window size 5, then func-
tion must accept 5 arguments. These arguments constitute the sliding window being processed.
Each time function is called, the middle argument is the element being processed, and the
arguments surrounding it are its window.

When an element is processed from somewhere in the interior of a sequence, where it is flanked on
either side by at least range elements, then the window is populated by those flanking elements
taken from sequence.

The boundary parameter specifies the window contents which are used for the processing of ele-
ments which are closer than range to either end of the sequence. The argument may be a
sequence containing at least twice range number of elements (one less than the window size): if
it has additional elements, they are not used. If it is a list, it may be shorter than twice range.
The argument may also be one of the two keyword symbols :wrap or :reflect, described
below.

If boundary is a sequence, it may be regarded as divided into two pieces of range length. If it
is a list of insufficient length, then missing elements are supplied as nil to make two range’s
worth of elements. These two pieces then flank sequence on either end. The left half of
boundary is effectively prepended to the sequence, and the right half effectively appended.
When the sliding window extends beyond the boundary of sequence near its start or end, the
window is populated from these flanking elements obtained from boundary.

If boundary argument is specified as the keyword :wrap, then the sequence is imagined to be
flanked at either end by an infinite repetition of copies of itself. These flanks are trimmed to the
window size to generate the boundary.

For instance if the sequence is (1 2 3) and the window size is 9 due to the value of range
being 4, then the behavior of :wrap is as if boundary valueof (3 1 2 3 1 2 3 1) were
specified. The left flankis (3 1 2 3), being the last four elements of an infinite repetition of 1
2 3; and the right flank is similarly (1 2 3 1), being the first four elements of an infinite repe-
titionof 1 2 3.

If boundary is given as the keyword : reflect, then the sequence is imagined to be flanked at
either end by an infinite repetition of reversed copies of itself. These flanks are trimmed to the
window size to generate the boundary. For instance if the sequence is (1 2 3) and the window
size is 9 due to the value of range being 4, then the behavior of : reflect is as if boundary
valueof (1 3 2 1 3 2 1 3) were specified. The left flankis (1 3 2 1), being the last
four elements of an infinite repetition of 3 2 1; and the right flank is similarly (3 2 1 3),
being the first four elements of an infinite repetition of 3 2 1.

Utility Commands 2021-07-12 322

TXR(1)

Examples:

TXR Programming Language TXR(1)

;7 change characters between angle brackets to upper case.
[window-map 1 nil (lambda (x y 2z)
(if (and (eq x #\<)
(eq z #\>))
(chr—-toupper y)
y))
"ab<c>de<f>g"]
—-=> "ab<C>de<F>g"

;7 collect all numbers which are the centre element of
;7 a monotonically increasing triplet
[window-mappend 1 :reflect (lambda (x y 2z)
(if (< x y 2)
(list y)))
(1213 42197578151
-—> (3 7)

;7 calculate a moving average with a five-element
;7 window, flanked by zeros at the boundaries:
[window-map 2 #(0 0 0 0)

(lambda (. args) (/ (sum args) 5))

#(4 7 9 13 51 6 11 10 3 8)]
-—> #(4.0 6.6 7.6 7.0 6.8 7.2 6.6 6.2 7.6 6.4 4.2))

9.22.52 Function interpose

Syntax:

(interpose sep sequence)

Description:

The interpose function returns a sequence of the same type as sequence, in which the ele-
ments from sequence appear with the sep value inserted between them.

If sequence is an empty sequence or a sequence of length 1, then a sequence identical to
sequence is returned. It may be a copy of sequence or it may be sequence itself.

If sequence is a character string, then the value sep must be a character.

It is permissible for sequence, or for a suffix of sequence to be a lazy list, in which case inter-
pose returns a lazy list, or a list with a lazy suffix.

Examples:

Utility Commands

(interpose #\- "xyz") -> "x-y-z"
(interpose t nil) -> nil
(interpose t #()) —> #()
(interpose #\a "") -> ""
(interpose t (range 0 0)) -> (0)
(interpose t (range 0 1)) -> (0 t 1)
(interpose t (range 0 2)) -> (0 t 1 t 2)
2021-07-12 323

TXR(1)

TXR Programming Language TXR(1)

9.22.53 Functions reduce-left and reduce-right

Syntax:
(reduce-left binary-function list
[init-value [key-functionl]])
(reduce-right binary-function list
[init-value [key-function]])
Description:

The reduce-1left and reduce-right functions reduce lists of operands specified by 1ist
and init-value to a single value by the repeated application of binary-function.

In the case of reduce-left, the 1ist argument required to be an object which is iterable
according to the iter-begin function. The reduce-right function treats the I1ist argu-
ment using list operations.

An effective list of operands is formed by combining 1ist and init-value. If key—func-
tion is specified, then the items of 1ist are mapped to new values through key-function,
as if by mapcar. If init-value is supplied, then in the case of reduce-1left, the effective
list of operands is formed by prepending init-value to I1ist. In the case of reduce-
right, the effective operand list is produced by appending init-valueto 1ist. The init-
value isn’t mapped through key—-function.

The production of the effective list can be expressed like this, though this is not to be understood
as the actual implementation:

(append (if init-value-present (list init-value))
[mapcar (or key-function identity) 1list]))))

In the reduce-right case, the arguments to append are reversed.

If the effective list of operands is empty, then binary-function is called with no arguments at
all, and its value is returned. This is the only case in which binary-function is called with no
arguments; in all remaining cases, it is called with two arguments.

If the effective list contains one item, then that item is returned.
Otherwise, the effective list contains two or more items, and is decimated as follows.

Note that an init-value specified as nil is not the same as a missing init-value; this
means that the initial value is the object nil. Omitting init-value is the same as specifying a
value of : (the colon keyword symbol). It is possible to specify key-function while omitting
an init-value argument. This is achieved by explicitly specifying : as the init-value
argument.

Under reduce-1left, the leftmost pair of operands is removed from the list and passed as argu-
ments to binary-function, in the same order that they appear in the list, and the resulting
value initializes an accumulator. Then, for each remaining item in the list, binary—-function
is invoked on two arguments: the current accumulator value, and the next element from the list.
After each call, the accumulator is updated with the return value of binary-function. The
final value of the accumulator is returned.

Under reduce-right, the list is processed right to left. The rightmost pair of elements in the
effective list is removed, and passed as arguments to binary-function, in the same order that

Utility Commands 2021-07-12 324

TXR(1)

TXR Programming Language TXR(1)

they appear in the list. The resulting value initializes an accumulator. Then, for each remaining
item in the list, binary-function is invoked on two arguments: the next element from the
list, in right to left order, and the current accumulator value. After each call, the accumulator is
updated with the return value of binary-function. The final value of the accumulator is
returned.

Examples:

;7 effective list is (1) so 1 is returned

(reduce—-left (fun +) () 1 nil) -> 1

;7 computes (- (- (= 0 1) 2) 3)
(reduce-left (fun -) (1 2 3) 0 nil) -> -6
;75 computes (- 1 (= 2 (= 3 0)))
(reduce-right (fun -) (1 2 3) 0 nil) -> 2

;;; computes (* 1 2 3)
(reduce-left (fun *) ’ ((1) (2) (3)) nil (fun first)) -> 6

;77 computes 1 because the effective list is empty
;75 and so * is called with no arguments, which yields 1.
(reduce-left (fun *) nil)

9.22.54 Functions some, all and none

Syntax:
(some sequence [predicate-fun [key-fun]l])
(all sequence [predicate—fun [key-fun]ll])
(none sequence [predicate-fun [key-fun]l])
Description:

The some, all and none functions apply a predicate-test function predicate—rfun over a list
of elements. If the argument key—-fun is specified, then elements of sequence are passed into
key-fun, and predicate-fun is applied to the resulting values. If key—fun is omitted, the
behavior is as if key—fun were the identity function. If predicate-fun is omitted, the
behavior is as if predicate—-fun were the identity function.

These functions have short-circuiting semantics and return conventions similar to the and and or
operators.

The some function applies predicate-fun to successive values produced by retrieving ele-
ments of 11ist and processing them through key—fun. If the list is empty, it returns nil. Oth-
erwise it returns the first non-nil return value returned by a call to predicate-fun and stops
evaluating the elements. If predicate-fun returns nil for all elements, some returns nil.

The all function applies predicate-fun to successive values produced by retrieving ele-
ments of 1ist and processing them through key—fun. If the list is empty, it returns t. Other-
wise, if predicate-fun yields nil for any value, the all function immediately returns with-
out invoking predicate—fun on any more elements. If all the elements are processed, then the
all function returns the value which predicate-fun yielded for the last element.

The none function applies predicate-fun to successive values produced by retrieving ele-
ments of Iist and processing them through key-fun. If the list is empty, it returns t.

Utility Commands 2021-07-12 325

TXR(1) TXR Programming Language TXR(1)

Otherwise, if predicate-fun yields non-nil for any value, the none function immediately
returns nil. If predicate-rfun yields nil for all values, the none function returns t.

Examples:
;; some of the integers are odd

[some " (2 4 6 9) oddp] -> t

;; none of the integers are even
[none " (1 3 4 7) evenp] —-> t

9.22.55 Function multi
Syntax:
(multi function sequence*)
Description:
The multi function distributes an arbitrary list processing function multi over multiple

sequences given by the 11st arguments.

The sequence arguments are first transposed into a single list of tuples. Each successive element
of this transposed list consists of a tuple of the successive items from the lists. The length of the
transposed list is that of the shortest 11st argument.

The transposed list is then passed to function as an argument.

The function is expected to produce a list of tuples, which are transposed again to produce a
list of lists which is then returned.

Conceptually, the input sequences are columns and function is invoked on a list of the rows
formed from these columns. The output of function is a transformed list of rows which is
reconstituted into a list of columns.

Example:

;7 Take three lists in parallel, and remove from all of them the
;7 element at all positions where the third list has an element of 20.

(multi (op remove-if (op egl 20) @1 third)

(1 2 3)
"(a b c)
(10 20 30))

-> ((1 3) (a c) (10 30))
;7 The (2 b 20) "row" is gone from the three "columns".

;; Note that the (op remove if (op eqgl 20) @1 third)
;; expression can be simplified using the ap operator:

;7 (op remove-if (ap eql @3 20))

Utility Commands 2021-07-12 326

TXR(1)

TXR Programming Language TXR(1)

9.22.56 Functions sort and nsort

Syntax:

(sort sequence [lessfun [keyfun]])
(nsort sequence [lessfun [keyfun]])

Description:

The nsort function destructively sorts sequence, producing a sequence which is sorted
according to the Iessfun and keyfun arguments.

The keyfun argument specifies a function which is applied to elements of the sequence to obtain
the key values which are then compared using the lessfun. If key fun is omitted, the identity func-
tion is used by default: the sequence elements themselves are their own sort keys.

The Iessfun argument specifies the comparison function which determines the sorting order. It
must be a binary function which can be invoked on pairs of keys as produced by the key function.
It must return a non-nil value if the left argument is considered to be lesser than the right argu-
ment. For instance, if the numeric function < is used on numeric keys, it produces an ascending
sorted order. If the function > is used, then a descending sort is produced. If 1essfun is omitted,
then it defaults to the generic 1less function.

The sort function has the same argument requirements as nsort but is non-destructive: it
returns a new object, leaving the input sequence unmodified, as if a copy of the input object
were made using the function copy and then that copy were sorted in-place using nsort.

The sort and nsort functions are stable for sequences which are lists. This means that the orig-
inal order of items which are considered identical is preserved. For strings and vectors, sort is
not stable.

The sort and nsort functions can be applied to hashes. It produces meaningful behavior for a
hash table which contains N keys which are the integers from O to N - 1. Such as hash is treated
as if it were a vector. The values are sorted and reassigned to sorted order to the integer keys. The
behavior of sort is not specified for hashes whose contents do not conform to this convention.

Note: nsort was introduced in TXR 238. Prior to that version, sort behaved like nsort.

9.22.57 Function grade

Syntax:

(grade sequence [lessfun [keyfun]])

Description:

The grade function returns a list of integer indices which indicate the position of the elements of
sequence in sorted order.

The 1essfun and keyfun arguments behave like those of the sort function.
The sequence object is not modified.

The internal sort performed by grade is not stable. The indices of any elements considered
equivalent under 1essfun may appear in any order in the returned index sequence.

Note: the grade function is inspired by the "grade up" and "grade down" operators in the APL
language.

Utility Commands 2021-07-12 327

TXR(1) TXR Programming Language TXR(1)

Examples:
;7 Order of the 2 3 positions of the "1"

;7 characters is not specified:

[grade "Hello"] -> (O

1 2 3 4)
[grade "Hello" >] -> (4 2 3 1

0)
9.22.58 Functions shuffle and nshuffle
Syntax:

(shuffle sequence [random-state])
(nshuffle sequence [random-statel])

Description:
The nshuffle function pseudorandomly rearranges the elements of sequence. This is per-
formed in place: sequence object is modified.

The return value is sequence itself.

The rearrangement depends on pseudorandom numbers obtained from the rand function. The
random-state argument, if present, is passed to that function.

The nshuffle function supports hash tables in a manner analogous to the way nsort supports
hash tables; the same remarks apply as in the description of that function.

The shuffle function has the same argument requirements and semantics, but differs from
nshuffle in that it avoids in-place modification of sequence: a new, shuffled sequence is
returned, as if a copy of sequence were made using copy and then that copy were shuffled in-
place and returned.

Note: nshuffle was introduced in TXR 238. Prior to that version, shuffle behaved like
nshuffle.

9.22.59 Function sort—-group
Syntax:

(sort—group sequence [keyfun [lessfunl]])

Description:

The sort—-group function sorts sequence according to the keyfun and lessfun argu-
ments, and then breaks the resulting sequence into groups, based on the equivalence of the ele-
ments under keyfun.
The following equivalence holds:

(sort—group sqgq 1lf kf)

<—=>

(partition-by kf (sort (copy sq) kf 1f))

Note the reversed order of keyfun and lessfun arguments between sort and sort—-group.

Utility Commands 2021-07-12 328

TXR(1) TXR Programming Language TXR(1)

9.22.60 Function uniqg
Syntax:

(unig sequence)
Description:

The unig function returns a sequence of the same kind as sequence, but with duplicates
removed. Elements of sequence are considered equal under the equal function. The first
occurrence of each element is retained, and the subsequent duplicates of that element, of any, are
suppressed, such that the order of the elements is otherwise preserved.

The unigqg function is an alias for the one-argument case of unique. That is to say, this equiva-
lence holds:

(unig s) <--> (unique s)

9.22.61 Function unique
Syntax:

(unique sequence [keyfun {hash-arg}* 1)
Description:

The unique function is a generalization of uniqg. It returns a sequence of the same kind as
sequence, but with duplicates removed.

If neither keyfun nor hash-args are specified, then elements of sequence are considered equal
under the eql function. The first occurrence of each element is retained, and the subsequent dupli-
cates of that element, of any, are suppressed, such that the order of the elements is otherwise pre-
served.

If keyfun is specified, then that function is applied to each element, and the resulting values are
compared for equality. In other words, the behavior is as if keyfun were the identity func-
tion.

If one or more hash-args are present, these specify the arguments for the construction of the
internal hash table used by unique. The arguments are like those of the hash function.

9.22.62 Function tuples
Syntax:
(tuples length sequence [fill-valuel)
Description:
The tuples function produces a lazy list which represents a reorganization of the elements of

sequence into tuples of Iength, where Iength must be a positive integer.

The length of the sequence might not be evenly divisible by the tuple length. In this case, if a
fill-value argument is specified, then the last tuple is padded with enough repetitions of
fill-value to make it have Iength elements. If filIl-value is not specified, then the last
tuple is left shorter than length.

The output of the function is a list, but the tuples themselves are sequences of the same kind as
sequence. If sequence is any kind of list, they are lists, and not lazy lists.

Utility Commands 2021-07-12 329

TXR(1) TXR Programming Language TXR(1)

Examples:

(tuples 3 #(1 2 3 45 6 7 8) 0) —> (#(1 2 3) #(4 5 6)

#(7 8 0))
(tuples 3 "abc") -> ("abc")
(tuples 3 "abcd") -> ("abc" "d")
(tuples 3 "abcd" #\z) -> ("abc" "dzz")
(tuples 3 (list 1 2) #\z) -> ((1 2 #\z))

9.22.63 Function partition-by
Syntax:
(partition-by function sequence)
Description:
If sequence is empty, then partition-by returns an empty list, and function is never

called.

Otherwise, partition-by returns a lazy list of partitions of the sequence sequence. Parti-
tions are consecutive, nonempty substrings of sequence, of the same kind as sequence.

The partitioning begins with the first element of sequence being placed into a partition.

The subsequent partitioning is done according to function, which is applied to each element of
sequence. Whenever, for the next element, the function returns the same value as it returned for
the previous element, the element is placed into the same partition. Otherwise, the next element is
placed into, and begins, a new partition.

The return values of the calls to function are compared using the equal function.

Examples:

[partition-by identity (1 2 3 3 4 4 4 5)] -> ((1) (2) (3 3)

(partition-by (op = 3) #(1 2 3 4 5 6 7)) —> (#(1 2) #(3)

9.23 Open Sequence Traversal
Functions in this category perform efficient traversal of sequences.

There are two flavors of these functions: functions in the iter-begin group, and functions in the seg-
begin group. The latter are obsolescent.

User-defined iteration is possible via defining special methods on structures. An object supports iteration by
defining the special method iter-begin which is different from the iter-begin function. This spe-
cial function returns an iterator object which supports special methods iter—-item, iter-more and
iter-step. Two protocols are supported, one of which is more efficient by eliminating the iter-more
method. Details are specified in the section Special Structure Functions.

9.23.1 Function iter-begin

Syntax:

Utility Commands 2021-07-12 330

TXR(1) TXR Programming Language TXR(1)

(iter-begin seq)
Description:

The iter-begin function returns an iterator object suitable for traversing the elements of the
sequence denoted by the seqg object.

If seqis alist-like sequence, then iter-begin may return seq itself as the iterator. Likewise if
seqis a number.

If seqis a structure which supports the iter-begin method, then that method is called and its
return value is returned. A structure which does not support this method is possibly considered to
be a sequence according to the usual criteria, based on whether it supports the nullify,
length or car methods. An struct object supporting none of these methods is deemed not iter-
able.

In all other cases, if seq s iterable, an object of type seg-iter is returned.

Range objects are iterable. A range is considered to be a numeric or character range if the from
element is a number or character. The to is then required to to be either value which is compara-
ble with that number or character using the < function, or else it must be one of the two objects t
or :, either of which indicate that the range is unbounded. In this unbounded range case, the
expressions (iter-begin X..:) and (iter-begin X..t) are equivalent to (iter-
begin X).

Search trees are iterable. Iteration entails an in-order visits of the elements of a tree. A tree iterator
created by tree-begin is also iterable. It is unspecified whether iteration over a tree-iter
object modifies that object to perform the traversal, or whether it uses a copy of the iterator.

If seq is not an iterable object, an error exception is thrown.
9.23.2 Function iter-more
Syntax:
(iter—-more iter)

Description:

The iter-more function returns t if there remain more elements to be traversed. Otherwise it
returns nil.

The iter argument must be a valid iterator returned by a call to iter-begin, iter-step or
iter-reset.

The iter-more function doesn’t change the state of iter.

If iter is the object nil then nil is returned. Note: the iter-begin may return nil if its
argument is nil or any empty sequence, or an empty range (a range whose to and from fields
are the same number or character).

If iterisa cons cell, then iter—-more returns t.

If iteris a number, then iter-more returns t. This is the case even if calculating the succes-
sor of that number isn’t possible due to floating-point overflow or insufficient system resources.

If iteris a character, then iter-more returns t if iter isn’t the highest possible character

Utility Commands 2021-07-12 331

TXR(1) TXR Programming Language TXR(1)

code, otherwise nil.

If iter was formed from a descending range, meaning that iter-begin was invoked on a
range with a from fielding exceeding its t o value, then iter-begin returns true while the cur-
rent iterator value is greater than the the limiting value given by the to field. For an ascending
range, it returns true if the current iterator value is lower than the limiting value. However, note the
peculiar semantics of iter—item with regard to descending range iteration.

If iter is a structure, then if it supports an iter-more method, then that method is called with
no arguments, and its return value is returned. If the structure does not have an iter-more
method, then t is returned.

9.23.3 Function iter-item
Syntax:
(iter—-item iter)
Description:
If the iter—-more function indicates that more items remain to be visited, then the next item can

be retrieved using iter-item.

The iter argument must be a valid iterator returned by a call to iter-begin, iter-step or
iter-reset.

The iter-more function doesn’t change the state of iter.

If iter—-more is invoked on an iterator which indicates that no more items remain to be visited,
the return value is nil.

If iterisa cons cell, then iter—-itemreturns the car field of that cell.
If i teris a character or number, then iter—item returns that character or number itself.

If iter is based on an ascending numeric or character range, then iter—item returns the cur-
rent iteration value, which is initialized by iter-begin as a copy of the range’s from field.
Thus, the range 0. . 3 traverses the values 0, 1 and 2, excluding the 3.

If iter is based on a descending numeric or character range, then iter-item returns the pre-
decessor of the current iteration value, which is initialized iter-begin as a copy of the range’s
from field. Thus, the range 3. .0 traverses the values 2, 1 and 0, excluding the 3: exactly the
same values are visited as for the range 0. . 3 only in reverse order.

If iteris a structure which supports the iter—item method, then that method is called and its
return value is returned.

9.23.4 Function iter-step
Syntax:

(iter—-step iter)
Description:

If the iter-more function indicates that more items remain to be visited, then the iter-step
function may be used to consume the next item.

Utility Commands 2021-07-12 332

TXR(1)

TXR Programming Language TXR(1)

The function returns an iterator denoting the traversal of the remaining items in the sequence.

The iter argument must be a valid iterator returned by a call to iter-begin, iter-step or
iter-reset.

The iter-step function may return a new object, in which case it avoids changing the state of
iter, or else it may change the state of iter and return it.

If the application discontinues the use of iter, and continues the traversal using the returned iter-
ator, it will work correctly in either situation.

If iter-step is invoked on an iterator which indicates that no more items remain to be visited,
the return value is unspecified.

If iterisa cons cell, then iter—step returns the cdr field of that cell. That value must itself
be a cons or else nil, otherwise an error is thrown. This is to prevent iteration from wrongly
iterating into the non-null terminators of improper lists. Without this rule, iteration of a list like (1
2 . 3) would reach the cons cell (2 . 3) at which point a subsequent iter—step would
return the cdr field 3. But that value is a valid iterator which will then continue by stepping
through 4, 5 and so on.

If iter is a list-like sequence, then cdr is invoked on it and that value is returned. The value
must also be a list-like sequence, or else nil. The reasoning for this is the same as for the similar
restriction imposed in the case when iteris a cons.

If iter is a character or number, then iter-step returns its successor, as if using the succ
function.

If iteris a structure which supports the iter—step method, then that method is called and its
return value is returned.

9.23.5 Function iter-reset

(iter-reset iter seq)

Description:

The iter-reset function returns an iterator object specialized for the task of traversing the
sequence seq.

If it is possible for iter to be that object, then the function may adjust the state of iter and
return it.

If iter-reset doesn’t use iter, then it behaves exactly like iter-begin being invoked on
seq.

If seqis a structure which supports the iter-reset method, then that method is called and its
return value is returned. Note the reversed arguments. The iter—reset method is of the seq
object, not of iter. That is to say, the call (iter-reset iter ob3j) results in the
obj. (iter-reset iter) call. If seqgis a structure which doesn’t support iter-reset
then iterisignored, iter-begin is invoked on seq and the result is returned.

Utility Commands 2021-07-12 333

TXR(1) TXR Programming Language TXR(1)

9.23.6 Function seg-begin
Syntax:
(seg-begin object)
Description:
The obsolescent seg-begin function returns an iterator object specialized to the task of travers-
ing the sequence represented by the input ob ject.

If object isn’t a sequence, an exception is thrown.

Note that if object is a lazy list, the returned iterator maintains a reference to the head of that list
during the traversal; therefore, generic iteration based on iterators from segq-begin is not suit-
able for indefinite iteration over infinite lists.

9.23.7 Function seg—next
Syntax:
(seg—next iter end-value)
Description:
The obsolescent segq—next function retrieves the next available item from the sequence iterated
by iter, which must be an object returned by seg-begin.

If the sequence has no more items to be traversed, then end—value is returned instead.

Note: to avoid ambiguities, the application should provide an end-value which is guaranteed
distinct from any item in the sequence, such as a freshly allocated object.

9.23.8 Function seg-reset
Syntax:

(seg-reset iter object)
Description:

The obsolescent seg—reset reinitializes the existing iterator object iter to begin a new traver-
sal over the given ob ject, which must be a value of a kind that would be a suitable argument for
seg-begin.

The seg-reset function returns iter.

9.24 Procedural List Construction

TXR Lisp provides an a structure type called 1ist-builder which encapsulates state and methods for
constructing lists procedurally. Among the advantages of using 1ist-builder is that lists can be con-
structed in the left-to-right direction without requiring multiple traversals or reversal. For example, 1ist -
builder naturally combines with iteration or recursion: items visited in an iterative or recursive process
can be collected easily using 1ist-builder in the order they are visited.

The 1ist-builder type provides methods for adding and removing items at either end of the list, mak-
ing it suitable where a dequeue structure is required.

The basic workflow begins with the instantiation of a 1ist-builder object. This object may be initial-
ized with a piece of list material which begins the to-be-constructed list, or it may be initialized to begin

Utility Commands 2021-07-12 334

TXR(1) TXR Programming Language TXR(1)

with an empty list. Methods such as add and pend are invoked on this object to extend the list with new
elements. At any point, the list constructed so far is available using the get method, which is also how the
final version of the list is eventually retrieved.

The 1ist-builder methods which add material to the list all return the list builder, making chaining
possible.

(new list-builder).(add 1).(add 2).(pend " (3 4 5)). (get)
-> (1 2 3 4 5)

The build macro is provided which syntactically streamlines the process. It implicitly creates a 1ist-—
builder instance and binds it to a hidden lexical variable. It then evaluates forms in a lexical scope in
which shorthand macros are available for building the list.

9.24.1 Structure 1ist-builder
Syntax:

(defstruct list-builder nil
head tail)

Description:

The 1ist-builder structure encapsulates the state for a list building process. Programs should
use the build-1ist function for creating an instance of 1ist-builder. The head and
tail slots should be regarded as internal variables.

9.24.2 Function build-1list

Syntax:
(build-1list [initial-l1ist])

Description:
The build-1ist function instantiates and returns an object of struct type 1ist-builder.
Ifno initial-1ist argument is supplied, then the object is implicitly initialized with an empty
list.
If the argument is supplied, then it is equivalent to calling build-1ist without an argument to
produce an object obj by invoking the method call obj. (ncon initial-Iist) on this
object. The object produced by the expression 1ist is installed (without being copied) into the
object as the prefix of the list to be constructed.
The initial-1ist argument can be a sequence other than a list.

Example:

;7 build the 1list (a b) trivially

(let ((lb (build-list ' (a b))))
1b. (get)
-> (a b)

9.24.3 Methods add and add*

Utility Commands 2021-07-12 335

TXR(1) TXR Programming Language TXR(1)
Syntax:
list-builder. (add element*)
list-builder. (add* element*)
Description:
The add and add* methods extend the list being constructed by a 1ist-builder object by
adding individual elements to it. The add method adds elements at the tail of the list, whereas
add* adds elements at the front.
These methods return the 11ist-builder object.
The precise semantics is as follows. All of the element arguments are combined into a list as if
by the 1ist function, and the resulting list combined with the current contents of the 1ist-
builder object as if using the append function. The resulting list becomes the new contents.
Examples:

;7 Build the 1list (1 2 3 4)

(let ((1lb (build-1list)))
1b. (add 3 4)
1b. (add* 1 2)
1b. (get))

-> (1 2 3 4)

;7 Add "c" to "abc"
;7 same semantics as (append "abc" #\c)

(let ((lb (build-1list "ab")))
1b. (add #\c)
1b. (get))

—> "abc"

9.24.4 Methods pend and pend*

Syntax:

list-builder. (pend 1ist*)
list-builder. (pend* 1ist*)

Description:

The pend and pend* methods extend the list being constructed by a 1ist-builder object by
adding lists to it. The pend method catenates the 1ist arguments together as if by the append
function, then appends the resulting list to the end of the list being constructed. The pend*
method is similar, except it prepends the catenated lists to the front of the list being constructed.

The pend and pend* operations do not mutate the input lists, but may cause the resulting list to
share structure with the input lists.

These functions may mutate the list already contained in 1ist-builder; however, they avoid
mutating those parts of the current list that are shared with inputs that were given in earlier calls to

these functions.

These methods return the 1ist-builder object.

Utility Commands 2021-07-12 336

TXR(1)

TXR Programming Language TXR(1)

Example:

;7 Build the 1list (1 2 3 4)

(let ((1lb (build-1list)))
1b. (pend ' (3 4))
1b. (pend* ' (1 2))
1b. (get))

-> (1 2 3 4)

9.24.5 Methods ncon and ncon*

Syntax:
list-builder. (ncon list¥*)
list-builder. (ncon* list¥*)
Description:
The ncon and ncon* methods extend the list being constructed by a 1ist-builder object by
adding lists to it. The ncon method destructively catenates the 1ist arguments as if by the
nconc function. The resulting list is appended to the list being constructed. The ncon* method
is similar, except it prepends the catenated lists to the front of the list being constructed.
These methods may destructively manipulate the list already contained in the 1ist-builder
object, and likewise may destructively manipulate the input lists. They may cause the list being
constructed to share substructure with the input lists.
Additionally, these methods may destructively manipulate the list already contained in the 1ist—
builder object without regard for shared structure between that list and inputs given earlier any
of the pend, pend*, ncon or ncon* functions.
The ncon* function can be called with a single argument which is an atom. This atom will simply
be installed as the terminating atom of the list being constructed, if the current list is an ordinary
list.
These methods return the 1ist-builder object.
Example:
;7 Build the 1list (1 2 3 4 . 5)
(let ((lb (build-1list)))
1b. (ncon* (list 1 2))
1b. (ncon (list 3 4))
1b. (ncon 5)
1b. (get))
-> (1 2 3 4 5)
9.24.6 Method get
Syntax:
list-builder. (get)
Description:

The get method retrieves the list constructed so far by a 1ist-builder object. It doesn’t

Utility Commands 2021-07-12 337

TXR(1) TXR Programming Language TXR(1)

change the state of the object. The retrieved list may be passed as an argument into the construc-
tion methods on the same object.

Examples:

;; Build the circular list (1 1 1 1 ...)
;7 by appending (1) to itself destructively:

(let ((1b (build-1list " (1))))
1b. (ncon* 1lb. (get))
1b. (get))

-> (1111 ...)

;; build the 1list (1 2 1 2 1 2 1 2)
;7 by doubling (1 2) twice:

(let (
1b. (
1b. (pend 1b. (get))
1b. (
1b. (

9.24.7 Methods del and del*
Syntax:

list—-builder. (del)
list—-builder. (del¥*)

Description:
The del and del* methods each remove an element from the list and return it. If the list is

empty, they return nil.

The del method removes an element from the front of the list, whereas del* removes an ele-
ment from the end of the list.

Note: this orientation is opposite to add and add*. Thus del pairs with add to produce FIFO
queuing behavior.

9.24.8 Macros build and buildn
Syntax:

(build form*)
(buildn form*)

Description:

The build and buildn macros provide a shorthand notation for constructing lists using the
list-builder structure. They eliminate the explicit call to the build-1ist function to con-
struct the object, and eliminate the explicit references to the object.

Both of these macros create a lexical environment in which a 1ist-builder object is implicitly
constructed and bound to a hidden variable. This lexical environment also provides local functions
named add, add*, pend, pend*, ncon, ncon*, get, del and del*, which mimic the
list-builder methods, but operate implicitly on this hidden variable, so that the object need

Utility Commands 2021-07-12 338

TXR(1) TXR Programming Language TXR(1)

not be mentioned as an argument. With the exception of get, del and del*, the local functions
return nil, unlike like the same-named list-builder methods, which return the 1ist—
builder object.

In this lexical environment, each form is evaluated in order.

When the last formis evaluated, build returns the constructed list, whereas buildn returns the
value of the last form.

If no forms are enclosed, both macros return nil.

Note: because the local function del has the same name as a global macro, it is implemented as a
macrolet. Inside abuild or buildn, if del is invoked with no arguments, then it denotes a
call to the 1ist-builder del method. If invoked with an argument, then it resolves to the
global del macro for deleting a place.

Examples:

;; Build the circular list (1 1 1 1 ...)
;7 by appending (1) to itself destructively:

(build
(add 1)
(ncon* (get))) -> (1 1 1 1 ...)

;; build the 1list (1 2 1 2 1 2 1 2)
;7 by doubling (1 2) twice:

(build
(add 1 2)
(pend (get))
(pend (get))) -> (L. 2 1 21 2 1 2)

;; build a list by mapping over the local
;; add function:

(build [mapdo add (range 1 3)1) -> (1 2 3)

;; breadth-first traversal of nested list;
(defun bf-map (tree visit-£fn)
(buildn
(add tree)
(whilet ((item (del)))
(if (atom item)
[visit—fn item]
(each ((el item))
(add el1))))))

(let (flat)
(bf-map (1 (2 (3 4 (5))) ((6 7) 8)) (do push @1 flat))
(nreverse flat))

-> (1 28 3 46 705)

Utility Commands 2021-07-12 339

TXR(1) TXR Programming Language TXR(1)

9.25 Permutations and Combinations
9.25.1 Function perm
Syntax:

(perm seqg [len])
Description:

The rperm function returns a lazy list which consists of all length 1en permutations of formed
by items taken from seq. The permutations do not use any element of seqg more than once.

Argument 1en, if present, must be a positive integer, and seq must be a sequence.

If Ien is not present, then its value defaults to the length of seq: the list of the full permutations
of the entire sequence is returned.

The permutations in the returned list are sequences of the same kind as seq.

If 1en is zero, then a list containing one permutation is returned, and that permutation is of zero
length.

If 1en exceeds the length of seq, then an empty list is returned, since it is impossible to make a
single nonrepeating permutation that requires more items than are available.

The permutations are lexicographically ordered.

9.25.2 Function rperm

Syntax:
(rperm seq len)

Description:
The rperm function returns a lazy list which consists of all the repeating permutations of length
len formed by items taken from seq. "Repeating” means that the items from seq can appear
more than once in the permutations.
The permutations which are returned are sequences of the same kind as seq.
Argument 1en must be a nonnegative integer, and seq must be a sequence.
If Ien is zero, then a single permutation is returned, of zero length. This is true regardless of
whether seqis itself empty.
If seqgis empty and Ien is greater than zero, then no permutations are returned, since permuta-
tions of a positive length require items, and the sequence has no items. Thus there exist no such
permutations.
The first permutation consists of 1e repetitions of the first element of seq. The next repetition, if
there is one, differs from the first repetition in that its last element is the second element of segq.
That is to say, the permutations are lexicographically ordered.

Examples:

(rperm "01" 3) —> ("000" "001" "010" "011"
"100" "101" "110" "111")

Utility Commands 2021-07-12 340

TXR(1)

TXR Programming Language TXR(1)

(rperm #(1) 3) —> (#(1 1 1))

(rperm " (0 1 2) 2) -=> ((0 0) (0 1) (0 2) (1 0)

9.25.3 Function comb

Syntax:

(comb seg len)

Description:

The comb function returns a lazy list which consists of all length 1en nonrepeating combinations
formed by taking items taken from seqg. "Nonrepeating combinations" means that the combina-
tions do not use any element of seq more than once. If seq contains no duplicates, then the com-
binations contain no duplicates.

Argument 1en must be a nonnegative integer, and seq must be a sequence or a hash table.
The combinations in the returned list are objects of the same kind as seq.

If 1en is zero, then a list containing one combination is returned, and that combination is of zero
length.

If Ien exceeds the number of elements in seq, then an empty list is returned, since it is impossi-
ble to make a single nonrepeating combination that requires more items than are available.

If seqgis a sequence, the returned combinations are lexicographically ordered. This requirement
is not applicable when seqis a hash table.

Example:

;; powerset function, in terms of comb.
;7 Yields a lazy list of all subsets of s,
;7 expressed as sequences of the same type as s.

(defun powerset (s)
(mappend* (op comb s) (range 0 (length s))))

9.25.4 Function rcomb

Syntax:

(rcomb seqg len)

Description:

The comb function returns a lazy list which consists of all length I1en repeating combinations
formed by taking items taken from seq. "Repeating combinations" means that the combinations
can use an element of seqg more than once.

Argument 1en must be a nonnegative integer, and seq must be a sequence.

The combinations in the returned list are sequences of the same kind as seq.

If 1en is zero, then a list containing one combination is returned, and that combination is of zero
length. This is true even if seqis empty.

Utility Commands 2021-07-12 341

TXR(1)

TXR Programming Language TXR(1)

If seqgis empty, and 1en is nonzero, then an empty list is returned.

The combinations are lexicographically ordered.

9.26 Macros

Because TXR Lisp supports structural macros, TXR processes TXR Lisp expressions in two separate
phases: the expansion phase and the evaluation/compilation phase. During the expansion phase, a top-level
expression is recursively traversed, and all macro invocations in it are expanded. The result is a transformed
expression which contains only function calls and invocations of special operators. This expanded form is
then evaluated or compiled, depending on the situation.

Macro invocations are compound forms and whose operator symbol has a macro definition in scope. A
macro definition is a kind of function which operates on syntax during macro-expansion, called upon to cal-
culate a transformation of the syntax. The return value of a macro replaces its invocation, and is traversed to
look for more opportunities for macro expansion. Macros differ from ordinary functions in three ways:
they are called at macro-expansion time, they receive pieces of unevaluated syntax as their arguments, and
their parameter lists are macro parameter lists which support destructuring, as well as certain special
parameters.

TXR Lisp also supports symbol macros. A symbol macro definition associates a symbol with an expan-
sion. When that symbol appears as a form, the macro-expander replaces it with the expansion.

TXR source files are treated somewhat differently with regard to macro expansion compared to TXR Lisp.
When TXR Lisp forms are read from a file by 1oad or compile or read by the interactive listener, each
form is expanded and evaluated or compiled before the subsequent form is processed. In contrast, when a
TXR file is loaded, expansion of the Lisp forms are its arguments takes place during the parsing of the
entire source file, and is complete for the entire file before any of the code is executed.

9.26.1 Macro parameter lists

TXR macros support destructuring, similarly to Common Lisp macros. This means that macro parameter
lists are like function argument lists, but support nesting. A macro parameter list can specify a nested
parameter list in every place where an argument symbol may appear. For instance, consider this macro
parameter list:

((a (b c)) : (¢c frm) ((d e) frm2 de-p) . 9)
The top-level of this nested form has the structure
(I : JK . L)
in which we can identify the major constituent positions as I, J, K and L.
The constituent at position I is the mandatory parameter (a (b c¢)). Position J holds the optional
parameter c (with default init form frm). At K is found the optional parameter (d e) (with default init
form frm2 and presence-indicating variable de-p). Finally, the parameter in the dot position L is g,

which captures trailing arguments.

Obviously, some of the parameters are compound expressions rather than symbols: (a (b c)) and (d
e) . These compounds express nested macro parameter lists.

Nested macro parameter lists recursively match the corresponding structure in the argument object. For
instance if a simple argument would capture the structure (1 (2 3)) then we can replace the argument

Utility Commands 2021-07-12 342

TXR(1) TXR Programming Language TXR(1)

with the nested argument list (a (b c¢)) which destructures the (1 (2 3)) such that the parameters a,
b and ¢ will end up bound to 1, 2 and 3, respectively.

Nested macro parameter lists have all the features of the top-level macro parameter lists: they can have
optional arguments with default values, use the dotted position, and contain the :env, :whole and
: form special parameters, which are described below. In nested parameter lists, the binding strictness is
relaxed for optional parameters. If (a (b c)) is optional, and the argument is, say, (1), then a gets 1,
and b and c receive nil.

Macro parameter lists also supports three special keywords, namely :env, :whole and : form.

The parameter list (:whole x :env y :form z) will bind parameter x to the entire macro parame-
ter list, bind parameter y to the macro environment and bind parameter z to the entire macro form (the
original compound form used to invoke the macro).

The :env, :whole and : form notations can occur anywhere in a macro parameter list, other than to the
right of the consing dot. They can be used in nested macro parameter lists also. Note that in a nested macro
parameter list, : form and :env do not change meaning: they bind the same object as they would in the
top-level of the macro parameter list. However the :whole parameter inside has a restricted scope in a
nested parameter list: its parameter will capture just that part of the argument material which matches that
parameter list, rather than the entire argument list.

The processing of macro parameter lists omits the feature that when the : (colon) keyword symbol is given
as the argument to an optional parameter, that argument is treated as a missing argument. This special logic
is implemented only in the function argument passing mechanism, not in the binding of macro parameters
to object structure. If the colon symbol appears in the object structure and is matched against an optional
parameter, it is an ordinary value. That parameter is considered present, and takes on the colon symbol as
its value.

Dialect Note:

In ANSI Common Lisp, the lambda list keyword swhole binds its corresponding variable to the
entire macro form, whereas TXR Lisp’s :whole binds its variable only to the arguments of the
macro form.

Note, however, that ANSI CL distinguishes between destructuring and macro lambda lists, and the
&whole parameter has a different behavior in each. Under destructuring-bind, the
&whole parameter receives just the arguments, just like the behavior of TXR Lisp’s :whole
parameter.

TXR Lisp does not distinguish between destructuring and macro lambda lists; they are the same
and behave the same way. Thus :whole is treated the same way in macros as in tree-bind
and related binding operators: it binds just the arguments to the parameter. TXR Lisp has the spe-
cial parameter : form by means of which macros can access their invoking form. This parameter
is also supported in t ree—bind and binds to the entire t ree-bind form.

9.26.2 Operator macro-time
Syntax:

(macro—time form*)
Description:

The macro-time operator has a syntax similar to the progn operator. Each form is evaluated
from left to right, and the resulting value is that of the last form.

Utility Commands 2021-07-12 343

TXR(1)

TXR Programming Language TXR(1)

The special behavior of macro-time is that the evaluation takes place during the expansion
phase, rather than during the evaluation phase.

Also, macro-time macro-expands each form and evaluates it before processing the next form
in the same way. Thus, for instance, if a form introduces a global definition, that definition will be
visible not only during the evaluation of a subsequent form, but also during its macro-expansion
time.

During the expansion phase, all macro-time expressions which occur in a context that calls for
evaluation are evaluated, and replaced by their quoted values. For instance (macro-time
(list 1 2 3)) evaluates (list 1 2 3) to the object (1 2 3) and the entire macro-
time form is replaced by that value, quoted: * (1 2 3). If the form is evaluated again at evalu-
ation-time, the resulting value will be that of the quote, in this case (1 2 3).

macro-time forms do not see the surrounding lexical environment; the see only global function
and variable bindings and macros.

Note: macro-time supports techniques that require a calculation to be performed in the environ-
ment where the program is being compiled, and inserting the result of that calculation as a literal
into the program source. Possibly, the calculation can have some useful effect in that environment,
or use as an input information that is available in that environment. The load-time operator
also inserts a calculated value as a de facto literal into the program, but it performs that calculation
in the environment where the compiled file is being loaded. The two operators may be considered
complementary in this sense.

Consider the source file:
(defun host—-name-c () (macro—-time (uname) .nodename))
(defun host-name-1 () (load-time (uname) .nodename))

If this is compiled via compile-file, the uname call in host-name-c takes place when it is
macro-expanded. Thereafter, the compiled version of the function returns the name of the machine
where the compilation took place, no matter in what environment it is subsequently loaded and
called.

In contrast, the compilation of host-name—1 arranges for that function’s uname call to take
place just one time, whenever the compiled file is loaded. Each time the function is subsequently
called, it will return the name of the machine where it was loaded, without making any additional
calls to uname.

The macro-time operator can occasionally be required in order for some constructs to evaluate
or compile. One way that occurs is when a construct that is being fully expanded itself defines a
macro which is later required in that same construct. For example:

(progn (defmacro mac () 42) (mac))

This specific example actually works under eval or file compilation, because in that situation it
isn’t fully expanded all at once. When eval and compile-file process a top-level form that is
a progn, they treat its argument forms as individual, separate top-level forms. In general, TXR
Lisp is designed in such a way as to not to require, in most ordinary programs, extra verbiage to
tell the compiler or evaluator that certain definitions are required by macros. However, somewhat
unusual situations can arise which are not handled in this way.

Utility Commands 2021-07-12 344

TXR(1)

TXR Programming Language TXR(1)

Also, macro-time, or the related @ (mdo) directive, can be occasionally necessary in TXR
queries, which are parsed and subject to macro-expansion in their entirety before being executed.

9.26.3 Operator defmacro

Syntax:

(defmacro name
(param* [: opt—-param*] [. rest-param])
body—-form*)

Description:

The defmacro operator is evaluated at expansion time. It defines a macro-expander function
under the name name, effectively creating a new operator.

Note that the above syntax synopsis describes only the canonical parameter syntax which remains
after parameter list macros are expanded. See the section Parameter List Macros.

Note that the parameter list is a macro parameter list, and not a function parameter list. This means
that each param and opt —-param can be not only a symbol, but it can itself be a parameter list.
The corresponding argument is then treated as a structure which matches that parameter list. This
nesting of parameter lists can be carried to an arbitrary depth.

A macro is called like any other operator, and resembles a function. Unlike in a function call, the
macro receives the argument expressions themselves, rather than their values. Therefore it oper-
ates on syntax rather than on values. Also, unlike a function call, a macro call occurs in the expan-
sion phase, rather than the evaluation phase.

The return value of the macro is the macro expansion. It is substituted in place of the entire macro
call form. That form is then expanded again; it may itself be another macro call, or contain more
macro calls.

A global macro defined using defmacro may decline to expand a macro form. Declining to
expand is achieved by returning the original unexpanded form, which may be captured using the
: form parameter. When a global macro declines to expand a form, the form is taken as-is. At
evaluation time, it will be treated as a function call. Note: when a local macro defined by macro-
let declines, more complicated requirements apply; see the description of macrolet.

Dialect Notes:

A macro in the global namespace introduced by defmacro may coexist with a function of the
same name introduced by de fun. This is not permitted in ANSI Common Lisp.

ANSI Common Lisp doesn’t describe the concept of declining to expand, except in the area of
compiler macros. Since TXR Lisp allows global macros and functions of the same name to coex-
ist, ordinary macros can be used to optimize functions in a manner similar to Common Lisp com-
piler macros. A macro can be written of the same name as a function, and can optimize certain
cases of the function call by expanding them to some alternative syntax. Cases which it doesn’t
optimize are handled by declining to expand, in which case the form remains as the original func-
tion call.

Example:

;; dolist macro similar to Common Lisp’s:

rrs

Utility Commands 2021-07-12 345

TXR(1)

TXR Programming Language TXR(1)

;7 The following will print 1, 2 and 3
;; on separate lines:
;; and return 42.

;5 (dolist (x " (1 2 3) 42)
1 (format t "“s\n" x))

(defmacro dolist ((var list : result) . body)
(let ((i (gensym)))
“(for ((,1 ,1list)) (,1i ,result) ((set ,i (cdr ,1i)))
(let ((,var (car ,1i)))
» *body))))

9.26.4 Operator macrolet

Syntax:

(macrolet ({ (name macro-style—-params
macro—-body—-form*) }*)
body—-form*)

Description:

The macrolet binding operator extends the macro-time lexical environment by making zero or
more new local macros visible.

The macrolet symbol is followed by a list of macro definitions. Each definition is a form which
begins with a name, followed by macro-style-params which is a macro parameter list, and
zero or more macro-body-forms. These macro definitions are similar to those globally
defined by the defmacro operator, except that they are in a local environment.

The macro definitions are followed by optional body—forms. The macros specified in the defi-
nitions are visible to these forms.

Forms inside the macro definitions such as the macro-body-forms, and initializer forms
appearing in the macro-style-params are subject to macro-expansion in a scope in which
none of the new macros being defined are yet visible. Once the macro definitions are themselves
macro-expanded, they are placed into a new macro environment, which is then used for macro
expanding the body-forms.

A macrolet form is fully processed in the expansion phase of a form, and is effectively replaced
by progn form which contains expanded versions of body—-forms. This expanded structure
shows no evidence that any macrolet forms ever existed in it. Therefore, it is impossible for the
code evaluated in the bodies and parameter lists of macrolet macros to have any visibility to
any surrounding lexical variable bindings, which are only instantiated in the evaluation phase, after
expansion is done and macros no longer exist.

A local macro defined using defmacro may decline to expand a macro form. Declining to
expand is achieved by returning the original unexpanded form, which may be captured using the
: form parameter. When a local macro declines to expand a form, the macro definition is tempo-
rarily hidden, as if it didn’t exist in the lexical scope. If another macro of the same name is thereby
revealed (a global macro or another local macro at a shallower nesting level), then an expansion is
tried with that macro. If no such macro is revealed, or if a lexical function binding of that name is
revealed, then no expansion takes place; the original form is taken as-is. When another macro is
tried, the process repeats, resulting in a search which proceeds as far as possible through outer lex-
ical scopes and finally the global scope.

Utility Commands 2021-07-12 346

TXR(1) TXR Programming Language TXR(1)

9.26.5 Function macro-form-p
Syntax:
(macro-form-p obj [env])
Description:
The macro-form—-p function returns t if obj represents the syntax of a form which is a macro

form: either a compound macro or a symbol macro. Otherwise it returns nil.

A macro form is one that will transform under macroexpand-1 or macroexpand; an object
which isn’t a macro form will not undergo expansion.

The optional env parameter is a macroexpansion environment. A macroexpansion environment is
passed down to macros and can be received via their special : env parameter.

env is used by macro-form-p to determine whether obj is a macro in a lexical macro envi-
ronment.

If envis not specified or is nil, then macro—form-p only recognizes global macros.

Example:

;7 macro which translates to ’"yes if its
;; argument is a macro from, or otherwise
;7 transforms to the form ’'no.

(defmacro ismacro (:env menv form)
(if (macro-form-p form menv)
llyes llno))

(macrolet ((local ()))

(ismacro (local))) ;7 ylelds yes
(ismacro (local)) ;7 yields no
(ismacro (ismacro foo)) ;; yields yes

During macro expansion, the global macro ismacro is handed the macro-expansion environment
via :env menv.

‘When the macro is invoked within the macrolet, this environment includes the macro-time lexical
scope in which the 1ocal macro is defined. So when global checks whether the argument form
(local) is a macro, the conclusion is yes: the (local) form is a macro call in that environment:
macro-form-p yields t.

When (global (local)) is invoked outside of the macrolet, no local macro is visible is
there, and so macro-form-p yields nil.

9.26.6 Functions macroexpand-1 and macroexpand
Syntax:

(macroexpand-1 obj [env])
(macroexpand obj [env])

Utility Commands 2021-07-12 347

TXR(1) TXR Programming Language TXR(1)

Description:

If obj is a macro form (an object for which macro-form-p returns t), these functions expand
the macro form and return the expanded form. Otherwise, they return ob j.

macroexpand-1 performs a single expansion, expanding just the macro that is referenced by
the symbol in the first position of obj, and returns the expansion. That expansion may itself be a
macro form.

macroexpand performs an expansion similar to macroexpand-1. If the result is a macro
form, then it expands that form, and keeps repeating this process until the expansion yields a non-
macro-form. That non-macro-form is then returned.

The optional env parameter is a macroexpansion environment. A macroexpansion environment is
passed down to macros and can be received via their special : env parameter. The environment
they receive is their lexically apparent macro-time environment in which local macros may be visi-
ble. A macro can use this environment to "manually” expand some form in the context of that
environment.

Example:

;7 (rem-num x) expands x, and if x begins with a number,
;7 1t removes the number and returns the resulting
;; form. Otherwise, it returns the entire form.

(defmacro rem—num (:env menv some—-form)
(let ((expanded (macroexpand some—form menv)))
(if (numberp (car expanded))
(cdr expanded)
some—form)))

(macrolet ((foo () " (1 list 42))
(bar () " (list "a)))
(list (rem—num (foo)) (rem—num (bar))))
-—> ((42) (a))

The rem—num macro is able to expand the (foo) and (bar) forms it receives as the some—
form argument, even though these forms use local macro that are only visible in their local scope.
This is thanks to the macro environment passed to rem—num. It is correctly able to work with the
expansions (1 list 42) and (list ’a) toproduce (list 42) and (list ’a) which
evaluate to 42 and a respectively.

9.26.7 Functions macroexpand-1-1ispl and macroexpand-lispl
Syntax:

(macroexpand-1-1lispl obj [env])
(macroexpand-lispl obj [env])

Description:
The macroexpand-1-1lispl and macroexpand-lispl functions closely resemble,

respectively, macroexpand-1 and macroexpand.

The argument and return value syntax and semantics is almost identical, except for one difference.
These functions consider argument obj to be syntax in a Lisp-1 evaluation context, such as any

Utility Commands 2021-07-12 348

TXR(1)

TXR Programming Language TXR(1)

argument position of the dwim operator, or the equivalent DWIM Brackets notation.

This makes a difference because in a Lisp-1 evaluation context, an inner function binding is able to
shadow an outer symbol macro binding of the same name.

The requirements about this language area are given in more detail in the description of the dwim
operator.

Note: the macroexpand-1lispl function is useful to the implementor of a macro whose
semantics requires one or more argument forms to be treated in a Lisp-1 context, in situations
when such a macro needs to itself expand the material, rather than merely insert it as-is into the
output code template.

9.26.8 Functions expand and expand*

(expand form [env])
(expand* form [env])

Description:

The functions expand and expand* both perform a complete expansion of form in the macro-
environment env, and return that expansion.

If env is omitted, the expansion takes place in the global environment in which only global
macros are visible.

The returned object is a structure that is devoid of any macro calls. Also, all macrolet and
symacrolet blocks in form form are removed in the returned structure, replaced by their fully
expanded bodies.

The difference between expand and expand* is that expand suppresses expansion-time
deferred warnings (exceptions of type defr-warning), issued for unbound variables or func-
tions. To suppress a warning means to intercept the warning exception with a handler which
throws a continue exception to resume processing. What this requirement means is that if
unbound functions or variables occur in the form being expanded by expand, the warning is
effectively squelched. Rationale: expand is may be used by macros for expanding fragments
which contain references to variables or functions which are not defined in those fragments.

9.26.9 Function expand-with-free-refs

(expand-with-free-refs form [inner-env [outer-env]])

Description:

The expand-with-free-refs form performs a full expansion of form, as if by the expand
function and returns a list containing that expansion, plus four additional items which provide
information about variable and function references which occur in form.

If both inner-env and outer-env are provided, then it is expected that inner-env is lexi-
cally nested within outer—env.

Note: it is not required that out er—env be the immediate parent of inner—env.

Note: a common usage situation is that outer—env is the environment of the invocation of a

Utility Commands 2021-07-12 349

TXR(1)

TXR Programming Language TXR(1)

"parent” macro which generates a form that contains local macros. The bodies of those local
macros use expand-with-free-refs, specifying their own environment as inner—-env
and that of their generating "parent" as outer—env.

In detail, the five items of the returned list are (expansion fv-inner ff-inner fv-—
outer ff-outer) whose descriptions are:

expansion
The full expansion of form, containing no macro invocations, or symacrolet or
macrolet forms.

fv-inner
A list of the free variables which occur in form relative to the inner—env environ-
ment. That is to say, variables that are not bound inside form and are not also bound in
inner—env. If inner-env is omitted, then these are the absolutely free variables
occurring in form.

ff-inner
Exactly like fv—-inner but informing about function bindings rather than variables.

fv-outer
A list of the variables which which occur in form which would be free if the environ-
ments between inner-env and outer—env (including the former, excluding the lat-
ter) were removed from consideration. A more detailed description of this semantics is
given below. If outer—env is omitted, then these are the absolutely free variables
occurring in form, ignoring the inner-env.

ff-outer
Exactly like fv—-outer but informing about function bindings rather than variables.

The semantics of the treatment of inner—-env and outer—env in the calculation of fv-
outer and ff-outer is as follows. A new environment diff—-env is calculated from these
two environments, and form is expanded in this environment. Variables and functions occurring
in form which are not bound in di ff-env are listed as fv—-outer and ff-outer.

This diff-env is calculated as follows. First diff-env is initialized as a copy of outer-
env. Then, all environments below outer—-env down to inner—-env are examined for bind-
ings which shadow bindings in diff-env. Those shadows are removed from diff-env.
Therefore, what remains in diff-env are those bindings from outer-env that are not shad-
owed by the environments between inner-envand outer—env.

Within each of the lists of variables returned by expand-with-free-refs, the order of the
variables is not specified.

Example:

Suppose that mac is a macro which somehow has access to the two indicated lexical environments
in the following code snippet:

(let (a c) ;; <- outer—-env
(let (b)
(let (c) ;; <- inner-env
(mac (list a b c d)))))

Suppose that mac invokes the expand-with-free-refs function, passing in the (1ist a
b ¢ d) argument form as form and two macro-time environment objects corresponding to the
indicated environments.

Utility Commands 2021-07-12 350

TXR(1)

TXR Programming Language TXR(1)

Then the following object shall be a correct return value of expand-with-free-refs:
((list a b ¢ d) (d) nil (d c b) nil)
A complete code example of this is given below.

Other correct return values are possible due to permitted variations in the order of the variables
within the four lists. For instance, instead of (d ¢ b) thelist (¢ b d) may appear.

The fv-innerlistis (d) because this is the only variable that occurs in (1ist a b c d)
which is free with regard to inner-env. The a, b and c variables are not listed because they
appear bound inside inner-env.

The reported fv-outer listis (b ¢ d) because the form is considered against diff—-env
which is formed by removing the shadowing bindings from outer-env. The difference between
(a c) and (b c) is a and so the form is considered in an environment containing the binding a
which leaves (b c d) free.

The following is a complete code sample demonstrating the above descriptions:

;7 Given this macro:
(defmacro bigmac (:env out-env big-form)
" (macrolet ((mac (:env in-env little-form)
~r, (expand-with-free-refs
little-form in-env ,out—-env)))
ybig-form))

(let (a c) ;; <- outer-env, surrounding bigmac
(bigmac
(let (b)
(let (c) ;; <- inner-env, surrounding mac
(mac (list a b c d))))))

-=> ((list a b ¢ d) (d) nil (d c b) nil)

Note: this information is useful because a set difference can be calculated between the two
reported sets. The set difference between the fv—-outer variables (b ¢ d) and the fv-inner
variables (d) is (b c¢).

That set difference (b c) is significant because it precisely informs about the bound variables
which occur in (1ist a b ¢ d) which appear bound in inner-env, but are not bound due
to a binding coming from outer-env. In the above example, these are the variables enclosed in
the bigmac macro, but external to the inner mac macro.

The variable d is not listed in (b c¢) because it is not a bound variable. The variable a is not in
(b c¢) because though it is bound in inner-env, that binding comes from outer-env.

The upshot of this logic is that it allows a macro to inspect a form in order to discover the identi-
ties of the variables and functions which are used inside that form, whose definitions come from a
specific, bounded scope surrounding that form.

9.26.10 Functions lexical-var-p and lexical-fun-p

Utility Commands 2021-07-12 351

TXR(1) TXR Programming Language TXR(1)

(lexical-var-p env form)
(lexical-fun-p env form)

Description:

These two functions are useful to macro writers. They are intended to be called from the bodies of
macro expanders, such as the bodies of defmacro or macrolet forms. The env argument is a
macro-time environment, which is available to macros via the special :env parameter. Using
these functions, a macro can enquire whether a given formis a symbol which has a variable bind-
ing or a function binding in the local lexical environment. This information is known during
macro expansion. The macro expander recognizes lexical function and variable bindings, because
these bindings can shadow macros.

Special variables are not lexical. The function lexical-var-p returns nil if form satisfies
special-var-p function, indicating that it is the name of a special variable.

The lexical-var—p function also returns nil for global lexical variables. If formis a sym-
bol for which only a global lexical variable binding is apparent, lexical-var—p returns nil.
Testing for the existence for a global variable can be done using boundp; if a symbol is boundp
but not special-var-p, then it is a global lexical variable.

Similarly, lexical-fun-p returns nil for global functions.

Example:
i
;7 this macro replaces itself with :lexical-var if its
;7 argument is a lexical variable, :lexical-fun if
;7 1ts argument is a lexical function, or with
;7 not-lex—-fun-var if neither is the case.
i
(defmacro classify (sym :env e)
(cond
((lexical-var-p e sym) :lexical-var)
((lexical-fun-p e sym) :lexical-fun)
(t :not-lex—-fun-var)))
i
;7 Use classify macro above to report classification
;; of the x, yv and f symbols in the given scope
i
(let ((x 1) (y 2))
(symacrolet ((y x))
(flet ((£ () (+ 2 2)))
(list (classify x) (classify y) (classify £)))))
——> (:lexical-var :not-lex-fun-var :lexical-fun)
;7 Locally bound specials are not lexical
(let ((*stdout* *stdnull¥*))
(classify *stdout*))
-—> :not-lex—-fun-var
Note:

These functions do not call macroexpand on the form. In most cases, it is necessary for the

Utility Commands 2021-07-12 352

TXR(1) TXR Programming Language TXR(1)

macro writers to do so. Not that in the above example, symbol y is classified as neither a lexical
function nor variable. However, it can be macro-expanded to x which is a lexical variable.

9.26.11 Function lexical-lispl-binding
Syntax:

(lexical-lispl-binding env symbol)
Description:

The lexical-lispl-binding function inspects the macro-time environment env to deter-
mine what kind of binding, if any, does symbol have in that environment, from a Lisp-1 perspec-
tive.

That is to say, it considers function bindings, variable bindings and symbol macro bindings to be
in a single name space and finds the innermost binding of one of these types for symbo1l.

If such a binding is found, then the function returns one of the three keyword symbols :var,
:fun, or : symacro.

If no such lexical binding is found, then the function returns nil.

Note that a nil return doesn’t mean that the symbol doesn’t have a lexical binding. It could have
an operator macro lexical binding (a macro binding in the function namespace established by
macrolet).

9.26.12 Operator defsymacro
Syntax:

(defsymacro sym form)
Description:

A defsymacro form introduces a symbol macro. A symbol macro consists of a binding between
a symbol symand and a form. The binding denotes the form itself, rather than its value.

The form argument is not subject to macro expansion; it is associated with sym in its unexpanded
state, as it appears in the defmacro form.

The defsymacro form must be evaluated for its defining to to take place; therefore, the defini-
tion is not available in the top-level form which contains the de f symacro invocation; it becomes
available to a subsequent top-level form.

Subsequent to the evaluation of the defsymacro definition, whenever the macro expander
encounters sym sym as a form, it replaces it by form. After this replacement takes place, form
itself is then processed for further replacement of macros and symbol macros.

Symbol macros are also recognized in contexts where sym denotes a place which is the target of
an assignment operation like set and similar.

Note: if a symbol macro expands to itself directly, expansion stops. However, if a symbol macro
expands to itself through a chain of expansions, runaway expansion-time recursion will occur.

If a global variable exists by the name sym, then defsymacro first removes that variable from

the global environment, and if that variable is special, the symbol’s special marking is removed.
defsymacro doesn’t alter the dynamic binding of a special variable. Any such a binding

Utility Commands 2021-07-12 353

TXR(1)

TXR Programming Language TXR(1)

remains intact. If defsymacro is evaluated in a scope in which there is any lexical or dynamic
binding of sym in the variable namespace, whether as a variable or macro, the global symbol
macro is shadowed by that binding.

9.26.13 Operator symacrolet

Syntax:

(symacrolet ({(sym form)}*) body—-form*)

Description:

The symacrolet operator binds local, lexically scoped macros that are similar to the global
symbol macros introduced by defsymacro.

Each sym in the bindings list is bound to its corresponding form, creating a new extension of the
expansion-time lexical macro environment.

Each body-form is subsequently macro-expanded in this new environment in which the new
symbol macros are visible.

Note: ordinary lexical bindings such as those introduced by let or by function parameters lists
shadow symbol macros. If a symbol x is bound by nested instances of macrolet and a let,
then the scope enclosed by both constructs will see whichever of the two bindings is more inner,
even though the bindings are active in completely separate phases of processing.

From the perspective of the arguments of a dwim form, lexical function bindings also shadow
symbol macros. This is consistent with the Lisp-1-style name resolution which applies inside a
dwim form. Lexical operator macros do not shadow symbol macros under any circumstances.

9.26.14 Macros placelet and placelet™

Syntax:

sym place) }*) body—-form¥*)

(placelet ({(
({ (sym place)}*) body—-form*)

(placelet™*

Description:

The placelet macro binds lexically scoped symbol macros in such a way that they behave as
aliases for places denoted by place forms.

Each place must be an expression denoting a syntactic place. The corresponding sym is estab-
lished as an alias for the storage location which that place denotes, over the scope of the body—
forms.

This binding takes place in such a way that each place is evaluated exactly once, only in order to
determine its storage location. The corresponding sym then serves as an alias for that location,
over the scope of the body—-forms. This means that whenever sym is evaluated, it stands for the
value of the storage location, and whenever a value is apparently stored into sym, it is actually the
storage location which receives it.

The placelet* variant implements an alternative scoping rule, which allows a later place
form to refer to a sym bound to an earlier place form. In other words, a given sym binding is
visible not only to the body—forms but also to place forms which occur later.

Note: certain kinds of places, notably (force promise) expressions, must be accessed
before they can be stored, and this restriction continues to hold when those places are accessed

Utility Commands 2021-07-12 354

TXR(1) TXR Programming Language TXR(1)

through placelet aliases.

Note: placelet differs from symacrolet in that the forms themselves are not aliased, but the

storage locations which they denote. (symacrolet ((x y)) z) performs the syntactic sub-
stitution of symbol x by form y, wherever x appears inside z as an evaluated form, and is not
shadowed by any inner binding. Whereas (placelet ((x y)) z) generates code which

arranges for y to be evaluated to a storage location, and syntactically replaces occurrences of x
with a form which directly denotes that storage location, wherever x appears inside z as an evalu-
ated form, and is not shadowed by any inner binding. Also, x is not necessarily substituted by a
single, fixed form, as in the case of symacrolet. Rather it may be substituted by one kind of
form when it is treated as a pure value, and another kind of form when it is treated as a place.

Example:
Implementation of inc using placelet:
(defmacro inc (place : (delta 1))
(with—-gensyms (p)

" (placelet ((,p ,place))
(set ,p (+ ,p ,delta)))))

The gensym p is used to avoid accidental capture of references emanating from the delta form.

9.26.15 Macro equot
Syntax:

(equot form)
Description:

The equot macro ("expand and quote") performs a full expansion of form in the surrounding
macro environment. Then it constructs a quote form whose argument is the expansion. This
quote form is then returned as the macro replacement for the original equot form.

Example:

(symacrolet ((a (+ 2 2)))
(list (quote a) (equot a) a))
-—> (a (+ 2 2) 4)

Above, the expansion of a is (+ 2 2). Thus the macro call (equot a) expands to (quote
(+ 2 2)). When that is evaluated, it yields (+ 2 2).

If a is quoted, then the result is a: no expansion or evaluation takes place. Whereas if a is pre-
sented for evaluation, then not only is it expanded to (+ 2 2), but that expansion is reduced to 4.

The equot operator is a mongrel of these two semantics: it permits expansion to proceed, but
then suppresses evaluation of the result.

9.26.16 Operators t ree-bind, mac-param-bind and mac-env-param-bind
Syntax:

(tree-bind macro-style-params expr form*)
(mac-param-bind context-expr
macro-style—-params expr form*)

Utility Commands 2021-07-12 355

TXR(1) TXR Programming Language TXR(1)

(mac-env-param-bind context-expr env-expr
macro-style—-params expr form*)

Description:

The t ree-bind operator evaluates expr, and then uses the resulting value as a counterpart to a
macro-style parameter list. If the value has a tree structure which matches the parameters, then
those parameters are established as bindings, and the forms, if any, are evaluated in the scope of
those bindings. The value of the last form is returned. If there are no forms, nil is returned.
Under t ree-bind, the value of the : form available to macro-style-paramsisthe tree—
bind form itself.

The mac-param-bind operator is similar to tree-bind except that it takes an extra argu-
ment, context—-expr. This argument is an expression which is evaluated. It is expected to eval-
uate to a compound form. If an error occurs during binding, the error diagnostic message is based
on information obtained from this form. By contrast, the t ree-bind operator’s error diagnostic
refers to the t ree—bind form, which is cryptic if the binding is used for the implementation of
some other construct, hidden from the user of that construct. In addition, context—-expr speci-
fies the value for the : form parameter that macro-style-params may refer to.

The mac-env-param-bind is an extension of mac-param-bind which takes one more
argument, env—-expr, before the macro parameters. This expression is evaluated, and becomes
the value of the : env parameter that macro-style—params may refer to.

Under tree-bind and mac-param-bind, the : env parameter takes on the value nil.
Under all three operators, the : whole parameter takes on the value of expr.

These operators throw an exception if there is a structural mismatch between the parameters and
the value of expr. One way to avoid this exception is to use t ree—case, which is based on the
conventions of tree-bind. There exists no tree-case analog for mac-param-bind or
mac-env-param-bind.

9.26.17 Operator tree-case
Syntax:

(tree—case expr { (macro-style—-params form*) }*)
Description:

The tree—case operator evaluates expr and matches it against a succession of zero or more
cases. Each case defines a pattern match, expressed as a macro style parameter list macro—
style—-params.

If the object produced by expr matches macro-style-params, then the parameters are
bound, becoming local variables, and the forms, if any, are evaluated in order in the environment
in which those variables are visible. If there are forms, the value of the last form becomes the

result value of the case, otherwise the result value of the case is nil.

If the result value of a case is the object : (the colon symbol), then processing continues with the
next case. Otherwise the evaluation of t ree—case terminates, returning the result value.

If the value of expr does not match the macro-style-params parameter list of a case, pro-
cessing continues with the next case.

If no cases match, then t ree—case terminates, returning nil.

Utility Commands 2021-07-12 356

TXR(1) TXR Programming Language TXR(1)

Example:
;7 reverse function implemented using tree-case
(defun tb-reverse (obj)

(tree—case obj
(O O) ;; the empty list is just returned

((a) obj) ;; one—-element list returned
((a b) “(,* (tb-reverse b) ,a)) ;; car/cdr recursion
(a a))) ;; atom is just returned

Note that in this example, the atom case is placed last, because an argument list which consists of
a symbol is a "catch all" match that matches any object. We know that it matches an atom, because
the previous (a . b) case matches conses. In general, the order of the cases in tree—case is
important: even more so than the order of cases in a cond or caseql. The one-element list case
is unnecessary; it can be removed.

9.26.18 Macro tb
Syntax:
(tb macro-style-params form¥*)
Description:
The tb macro is similar to the 1ambda operator but its argument binding is based on a macro-
style parameter list. The name is an abbreviation of t ree-bind.

A tb form evaluates to a function which takes a variable number of arguments.

When that function is called, those arguments are taken as a list object which is matched against
macro-style-params as if by tree-bind. If the match is successful, then the parameters
are bound to the corresponding elements from the argument structure and each successive formis
evaluated an environment in which those bindings are visible. The value of the last form is the
return value of the function. If there are no forms, the function’s return value is nil.

The following equivalence holds, where args should be understood to be a globally unique sym-

bol:
(tb pattern body ...) <-—> (lambda (. args)
(tree-bind pattern args body ...))
9.26.19 Macro tc
Syntax:
(tc { (macro-style—-params form*) }*)
Description:

The tc macro produces an anonymous function whose behavior is closely based on the tree-
case operator. Its name is an abbreviation of t ree—-case.

The anonymous function takes a variable number of arguments. Its argument list is taken to be the
value macro is tested against the multiple pattern clauses of an implicit t ree—case. The return

value of the function is that of the implied t ree-case.

The following equivalence holds, where args should be understood to be a globally unique

Utility Commands 2021-07-12 357

TXR(1) TXR Programming Language TXR(1)

symbol:
(tc clausel clause2 ...) <-—> (lambda (. args)
(tree—case args
clausel clause2 ...))

9.26.20 Macro with—gensyms
Syntax:

(with—-gensyms (sym*) body-form*)
Description:

The with-gensyms evaluates the body—forms in an environment in which each variable name
symbol symis bound to a new uninterned symbol ("gensym").

Example:

The code:

(let ((x (gensym))
(y (gensym))
(z (gensym)))
(rx ,v ,2))

may be expressed more conveniently using the with-gensyms shorthand:

(with—-gensyms (x y 2z)
“Gx Y s2))

9.27 Parameter List Macros

Parameter list macros, also more briefly called parameter macros are an original feature of TXR Lisp.

If the first element of a function or macro parameter list is a keyword symbol other than :env, :whole,
:formor : (the colon symbol), it denotes a parameter macro. This keyword symbol is expected to have a
binding in the parameter macro namespace: a global namespace which associates keyword symbols with
parameter list expander functions.

Expansion of a parameter list macro occurs at macro-expansion time, when a function’s parameter list is
traversed by the macro expander. It takes place as follows. First, the keyword is removed from the parame-
ter list. The keyword’s binding in the parameter macro namespace is retrieved. If it doesn’t exist, an excep-
tion is thrown. Otherwise, the remaining parameter list is first recursively processed for more occurrences
of parameter macros. This expansion produces a transformed parameter list, along with a transformed
function body. These two artifacts are then passed to the transformer function retrieved from the keyword
symbol’s binding. The function returns a further transformed version of the parameter list and body. These
are processed for more parameter macros. The process terminates when no more expansion is possible,
because a parameter list has been produced which does not begin with a parameter macro. This final param-
eter list and its accompanying body are then taken in place of the original parameter list and body.

TXR Lisp provides a two built-in parameter list macros. The :key parameter macro endows a function
keyword parameters. The :match parameter macro allows a function to be expressed using pattern

matching, which requires the body to consist of pattern-matching clauses.

The implementation of both of these macros is written entirely using this parameter list macro mechanism,

Utility Commands 2021-07-12 358

TXR(1) TXR Programming Language TXR(1)

by means of the public define-param-expander macro.

9.27.1 Special variable *param-macro*
Description:

The variable *param-macro* holds a hash table which associates keyword symbols with
parameter list expander functions.

The functions are expected to conform to the following syntax:
(lambda (params body env form) form*)

The params parameter receives the parameter list of the function which is undergoing parameter
expansion. All other parameter macros have already been expanded.

The body parameter receives the list of body forms. The function is expected to return a cons
cell whose car contains the transformed parameter list, and whose cdr contains the transformed
list of body forms. Parameter expansion takes place at macro expansion time.

The env parameter receives the macro-expansion-time environment which surrounds the function
being expanded. Note that this environment doesn’t take into account the parameters themselves;
therefore, it is not the correct environment for expanding macros among the body forms. For that
purpose, it must be extended with shadowing entries, the manner of doing which is undocumented.
However env may be used directly for expanding init forms for optional parameters occurring in
params.

The form parameter receives the overall function-defining form that is being processes, such as a
defun or lambda form. This is intended for error reporting.

A parameter transformer returns the transformed parameter list and body as a single object: a list
whose first element is the parameter list, and whose remaining elements are the forms of the body.
Thus, the following is a correct null transformer:

(lambda (params body env form)
(cons params body))

9.27.2 Macro define-param-expander
Syntax:

(define-param-expander name (pvar bvar : evar fvar)
form*)

Description:

The define-param—expander macro provides syntax for defining parameter macros. Invoca-
tions of this macro expand to code which constructs an anonymous function and installs it into the
param-macro hash table, under the key given by name.

The name parameter’s argument should be a keyword symbol that is valid for use as a parameter
macro name.

The pvar, bvar, evar and fvar arguments must be symbols suitable for variable binding.
These symbols define the parameters of the expander function which shall, respectively, receive
the parameter list, body forms, macro environment and function form. If evar is omitted, a sym-
bol generated by the gensym function is used. Likewise if fvar is omitted.

Utility Commands 2021-07-12 359

TXR(1) TXR Programming Language TXR(1)

The form arguments constitute the body of the expander.
The define-param—-expander form returns name.

The parameter macro returns the transformed parameter list and body as a single object: a list
whose first element is the parameter list, and whose remaining elements are the forms of the body.

Example:

The following example shows the implementation of a parameter macro :memo which provides
rudimentary memoization. Using the macro is extremely easy. It is a matter of simply inserting
the :memo keyword at the front of a function’s parameter list. The function is then memoized.

(defvarl S$memo% (hash :weak-keys))

(defun ensure-memo (sym)
(or (gethash %Smemo% sym)
(sethash %$memo% sym (hash))))

(define-param-expander :memo (param body)
(let* ((memo-parm [param O0.. (posg : param)])
(hash (gensym))
(key (gensym)))
" (,param (let ((,hash (ensure-memo ’,hash))
(,key (list , *memo-parm)))
(or (gethash ,hash ,key)
(sethash ,hash ,key (progn ,*body)))))))

The above : memo macro may be used to define a memoized Fibonacci function as follows:
(defun fib (:memo n)
(if (< n 2)
(clamp 0 1 n)
(+ (fib (pred n)) (fib (ppred n)))))

All that is required is the insertion of the : memo keyword.

9.27.3 Parameter list macro :key

Syntax:
(:key non-key-param*
[—— {sym | (sym [init-form [p-sym]])}* 1]
[. rest-param 1])
Description:

Parameter list macro : key injects keyword parameter support into functions and macros.

When : key appears as the first item in a function parameter list, a special syntax is recognized in
the parameter list. After any required and optional parameters, the symbol —— (two dashes) may
appear. Parameters after this symbol are interpreted as keyword parameters. After the keyword
parameters, a rest parameter may appear in the usual way as a symbol in the dotted position.

Keyword parameters use the same syntax as optional parameters, except that if used in a macro
parameter list, they do not support destructuring whereas optional parameters do. That is to say,

Utility Commands 2021-07-12 360

TXR(1)

TXR Programming Language TXR(1)

regardless whether :key is used in a function or macro, keyword parameters are symbols.

A keyword parameter takes three possible forms:

sym A keyword parameter may be specified as a simple symbol sym. If the argument for such
a keyword parameter is missing, it takes on the value nil.

(sym init—-form)

If the keyword parameter symbol sym is enclosed in a list, then the second element of
that list specifies a default value, similarly to the default value for an optional argument.
If the function is called in such a way that the argument for the parameter is missing, the
init-form is evaluated and the resulting value is bound to the keyword parameter.
The evaluation takes place in a lexical scope in which the required and optional parame-
ters are are already visible, and their values are bound. If there is a rest-param it is
also visible in this scope, even though in the parameter list it appears to the left.

(sym init—form p-sym)

The three-element form of the keyword parameter specifies an additional symbol p—sym,
which names an argument that implicitly receives a Boolean argument indicating the
presence of the keyword argument. If an argument is not passed for the keyword parame-
ter sym, then parameter sym—p takes on the value nil. If an argument is given for sym,
then the sym—p argument takes on the value t. This mechanism also closely resembles
the analogous one supported in optional arguments. See the previous paragraph regarding
the evaluation scope of init-form.

In a call to a : key-enabled function, keyword arguments begin after those arguments which sat-
isfy all of the required and optional parameters. Keyword arguments consist of interleaved indica-
tors and values, which are separate arguments. Thus passing a keyword argument actually
requires the passing of two function arguments: an indicator keyword symbol, followed by the
associated value. The indicator keywords are expected to have the same symbol name as the
defined keyword parameters. For instance, the indicator-value pair : xyz 42 passes the value 42
to a keyword parameter that may be named xyz in any package: it may be usr:xyz or
mypackage : xyz and so forth. Arguments specifying unrecognized keywords are ignored.

If the function has a rest-param, then that parameter receives the keyword arguments as a list.
Since that list contains indicators and values, it is a de facto property list. In detail, the :key
mechanism generates a regular variadic function which receives the keyword arguments as the
trailing argument list. That function parses the recognized keyword arguments out of the trailing
list, and binds them to the keyword parameter symbols as local variables. If a rest-param
parameter is defined, then the entire keyword argument list is available through that parameter, and
the keyword argument parsing logic also refers to the value of that parameter to gain access to the
keyword arguments. If there is no rest-param specified, then the : key macro adds a rest—
param using a machine-generated symbol. The argument parsing logic then refers to the value of
that symbol.

Example:

Define a function fun with two required arguments a b, one optional argument c, two keyword
arguments foo and bar, and a rest parameter k1ist:

(defun fun (:key a b : ¢ —— foo bar . klist)
(list a b ¢ foo bar klist))

(fun 1 2 3 :bar 4) -> (1 2 3 nil 4 (:bar 4))

Utility Commands 2021-07-12 361

TXR(1) TXR Programming Language TXR(1)

Define a function with only keyword arguments, with default expressions and Boolean indicator
params:

(defun keyfun (:key —-— (a 10 a-p) (b 20 b-p))
(list a a-p b b-p))

(keyfun :a 3) -> (3 t 20 nil)
(keyfun :b 4) -> (10 nil 4 t)
(keyfun :c 4) -> (10 nil 20 nil)
(keyfun) -> (10 nil 20 nil)
9.28 Mutation of Syntactic Places

9.28.1 Macro set

Syntax:
(set {place new-value}¥*)

Description:

The set operator stores the values of expressions in places. It must be given an even number of
arguments.

If there are no arguments, then set does nothing and returns nil.
If there are two arguments, place and new-value, then place is evaluated to determine its
storage location, then new—value is evaluated to determine the value to be stored there, and then

the value is stored in that location. Finally, the value is also returned as the result value.

If there are more than two arguments, then set performs multiple assignments in left-to-right

order. Effectively, (set vl el v2 e2 ... vn en) is precisely equivalent to (progn
(set vl el) (set v2 e2) ... (set vn en)).
9.28.2 Macro pset
Syntax:
(pset {place new-value}*)
Description:

The syntax of pset is similar to that of set, and the semantics is similar also in that zero or more
places are assigned zero or more values. In fact, if there are no arguments, or if there is exactly one
pair of arguments, pset is equivalent to set.

If there are two or more argument pairs, then all of the arguments are evaluated first, in left-to-
right order. No store takes place until after every place is determined, and every new-value is
calculated. During the calculation, the values to be stored are retained in hidden, temporary loca-
tions. Finally, these values are moved into the determined places. The rightmost value is returned
as the form’s value.

The assignments thus appear to take place in parallel, and pset is capable of exchanging the val-

ues of a pair of places, or rotating the values among three or more places. (However, there are
more convenient operators for this, namely rotate and swap).

Utility Commands 2021-07-12 362

TXR(1) TXR Programming Language TXR(1)

Example:
;7 exchange x and y

(pset x v y X)

;7 exchange elements 0 and 1; and 2 and 3 of vector v:
(let ((v (vec 0 10 20 30))
(1 -1))
(pset [vec (inc 1i)] [vec (inc 1i)]
[vec (inc 1i)] [vec (inc 1i)])
vec)
-> #(10 0 30 20)

9.28.3 Macro zap
Syntax:

(zap place [new-valuel)

Description:

The zap macro assigns new—value to place and returns the previous value of place.
If new-value is missing, then nil is used.

In more detail, first place is evaluated to determine the storage location. Then, the location is
accessed to retrieve the previous value. Then, the new—value expression is evaluated, and that
value is placed into the storage location. Finally, the previously retrieved value is returned.

9.28.4 Macro f1lip
Syntax:

(flip place)

Description:

The £11ip macro toggles the Boolean value stored in place.

If place previously held nil, it is set to t, and if it previously held a value other than nil, it is
settonil.

9.28.5 Macros test-set and test-clear
Syntax:

(test—-set place)
(test—-clear place)

Description:

The test-set macro examines the value of place. Ifitis nil then it stores t into the place,
and returns t. Otherwise it leaves place unchanged and returns nil.

The test-clear macro examines the value of place. If it is Boolean true (any value except
nil) then it stores nil into the place, and returns t. Otherwise it leaves place unchanged and
returns nil.

Utility Commands 2021-07-12 363

TXR(1) TXR Programming Language TXR(1)

9.28.6 Macro compare-swap
Syntax:
(compare-swap place cmp—-fun cmp-val store-val)
Description:
The compare-swap macro examines the value of place and compares it to cmp-val using

the comparison function given by the function name cmp-fun.

This comparison takes places as if by evaluating the expression (cmp-fun value cmp-val)
where value denotes the current value of place.

If the comparison is false, pIlace is not modified, the store-val expression is not evaluated,
and the macro returns nil.

If the comparison is true, then compare-swap evaluates the st ore-val expression, stores the
resulting value into pIace and returns t.

9.28.7 Macros inc and dec
Syntax:

(inc place [deltal)
(dec place [deltal])

Description:
The inc macro increments place by adding delta to its value. If delta is missing, the value

used in its place the integer 1.

First the pIlace argument is evaluated as a syntactic place to determine the location. Then, the
value currently stored in that location is retrieved. Next, the delta expression is evaluated. Its
value is added to the previously retrieved value as if by the + function. The resulting value is
stored in the place, and returned.

The macro dec works exactly like inc except that addition is replaced by subtraction. The simi-
larly defaulted delta value is subtracted from the previous value of the place.

9.28.8 Macros pinc and pdec
Syntax:

(pinc place [deltal)
(pdec place [deltal)

Description:
The macros pinc and pdec are similar to inc and dec.

The only difference is that they return the previous value of pIlace rather than the incremented
value.

9.28.9 Macros test—-inc and test-dec
Syntax:

(test—-inc place [delta [from-valll)
(test—-dec place [delta [to-valll)

Utility Commands 2021-07-12 364

TXR(1)

TXR Programming Language TXR(1)

Description:

The test-inc and test-dec macros provide combined operations which change the value of
a place and provide a test whether, respectively, a certain previous value was overwritten, or a cer-
tain new value was attained. By default, this tested value is zero.

The test-inc macro notes the prior value of place and then updates it with that value, plus
delta, which defaults to 1. If the prior value is eql to from-val then it returns t, otherwise
nil. The default value of from-val is zero.

The test-dec macro produces a new value by subtracting delta from the value of place.
The argument delta defaults to 1. The new value is stored into place. If the new value is eql
to to—val then t is returned, otherwise nil.

9.28.10 Macro swap

Syntax:
(swap left-place right-place)
Description:
The swap macro exchanges the values of left-place and right-place and returns the
value which is thereby transferred to right-place.
First, Ieft-place and right-place are evaluated, in that order, to determine their locations.
Then the prior values are retrieved, exchanged and stored back. The value stored in right-
placeis also returned.
If Ieft-place and right-place are ranges of the same sequence, the behavior is not speci-
fied if the ranges overlap or are of unequal length.
Note: the rotate macro’s behavior is somewhat more specified in this regard. Thus, although
any correct swap expression can be expressed using rotate, but the reverse isn’t true.
9.28.11 Macro push
Syntax:
(push item place)
Description:
The push macro places item at the head of the list stored in pIace and returns the updated list
which is stored back in place.
First, the expression item is evaluated to produce the push value. Then, place is evaluated to
determine its storage location. Next, the storage location is accessed to retrieve the list value
which is stored there. A new object is produced as if by invoking cons function on the push value
and list value. This object is stored into the location, and returned.
9.28.12 Macro pop
Syntax:
(pop place)
Description:

The pop macro removes an element from the list stored in place and returns it.

Utility Commands 2021-07-12 365

TXR(1)

TXR Programming Language TXR(1)

First, place is evaluated to determine the place. The place is accessed to retrieve the original
value. Then a new value is calculated, as if by applying the cdr function to the old value. This
new value is stored. Finally, a return value is calculated and returned, as if by applying the car
function to the original value.

9.28.13 Macro pushnew

(pushnew item place [testfun [keyfunll])

Description:

The pushnew macro inspects the list stored in place. If the list already contains the item, then
it returns the list. Otherwise it creates a new list with the item at the front and stores it back into
place, and returns it.

First, the expression item is evaluated to produce the push value. Then, place is evaluated to
determine its storage location. Next, the storage location is accessed to retrieve the list value
which is stored there. The list is inspected to check whether it already contains the push value, as
if using the member function. If that is the case, the list is returned and the operation finishes.
Otherwise, a new object is produced as if by invoking cons function on the push value and list
value. This object is stored into the location and returned.

9.28.14 Macro shift

(shift place+ shift-in-value)

Description:

The shift macro treats one or more places as a "multi-place shift register”. The values of the
places are shifted one place to the left. The first (Ieftmost) place receives the value of the second
place, the second receives that of the third, and so on. The last (rightmost) place receives shift—
in-value (which is not treated as a place, even if it is a syntactic place form). The previous
value of the first place is returned.

More precisely, all of the argument forms are evaluated left to right, in the process of which the
storage locations of the places are determined, shift-in-value is reduced to its value.

The values stored in the places are sampled and saved.

Note that it is not specified whether the places are sampled in a separate pass after the evaluation
of the argument forms, or whether the sampling is interleaved into the argument evaluation. This
affects the behavior in situations in which the evaluation of any of the place forms, or of
shift-in-value, has the side effect of modifying later places.

Next, the places are updated by storing the saved value of the second place into the first place, the
third place into the second and so forth, and the value of shift-in-value into the last place.

Finally, the saved original value of the first place is returned.

If any of the places are ranges which index into the same sequence, and the behavior is not other-
wise unspecified due to the issue noted in an earlier paragraph, the effect upon the multiply-stored
sequence can be inferred from the above-described storage order. Note that even if stores take
place which change the length of the sequence and move some elements, not-yet-processed stores
whose ranges to refer to these elements are not adjusted.

Utility Commands 2021-07-12 366

TXR(1) TXR Programming Language TXR(1)

With regard to the foregoing paragraph, a recommended practice is that if subranges of the same
sequence object are shifted, they be given to the macro in ascending order of starting index. Fur-
thermore, the semantics is simpler if the ranges do not overlap.

9.28.15 Macro rotate
Syntax:

(rotate place¥*)

Description:

Treats zero or more places as a "multi-place rotate register”. If there are no arguments, there is no
effect and nil is returned. Otherwise, the last (rightmost) place receives the value of the first (left-
most) place. The leftmost place receives the value of the second place, and so on. If there are two
arguments, this equivalent to swap. The prior value of the first place, which is the value rotated
into the last place, is returned.

More precisely, the place arguments are evaluated left to right, and the storage locations are
thereby determined. The storage locations are sampled, and then the sampled values are stored
back into the locations, but rotated by one place as described above. The saved original value of
the leftmost place is returned.

It is not specified whether the sampling of the original values is a separate pass which takes place
after the arguments are evaluated, or whether this sampling it is interleaved into argument evalua-
tion. This affects the behavior in situations in which the evaluation of any of the place forms has
the side effect of modifying the value stored in a later place form.

If any of the places are ranges which index into the same sequence, and the behavior is not other-
wise unspecified due to the issue noted in the preceding paragraph, the effect upon the multiply-
stored sequence can be inferred from the above-described storage order. Note that even if stores
take place which change the length of the sequence and move some elements, not-yet-processed
stores whose ranges to refer to these elements are not adjusted.

With regard to the foregoing paragraph, a recommended practice is that if subranges of the same
sequence object are shifted, they be given to the macro in ascending order of starting index. Fur-
thermore, the semantics is simpler if the ranges do not overlap.

9.28.16 Macro del
Syntax:

(del place)

Description:

The del macro requests the deletion of place. If place doesn’t support deletion, an exception
is thrown.

First place is evaluated, thereby determining its location. Then the place is accessed to retrieve
its value. The place is then subject to deletion. Finally, the previously retrieved value is returned.

Precisely what deletion means depends on the kind of place. The built-in places in TXR Lisp
have deletion semantics which are intended to be unsurprising to the programmer familiar with the

data structure which holds the place.

Generally, if a place denotes the element of a sequence, then deletion of the place implies deletion
of the element, and deletion of the element implies that the gap produced by the element is closed.

Utility Commands 2021-07-12 367

TXR(1)

TXR Programming Language TXR(1)

The deleted element is effectively replaced by its successor, that successor by its successor and so
on. If a place denotes a value stored in a dynamic data set such as a hash table, then deletion of
that place implies deletion of the entry which holds that value. If the entry is identified by a key,
that key is also removed.

9.28.17 Macro 1lset

Syntax:
(1lset {placel}l+ sequence—expr)
Description:
The lset operator’s parameter list consists of one or more places followed by an expression
sequence-expr.
The macro evaluates sequence-expr, which is expected to produce a sequence.
Successive elements of the resulting list are then assigned to each successive place.
If there are fewer elements in the sequence than places, the unmatched places receive the value
nil.
Excess elements in the sequence are ignored.
An error exception occurs if the sequence is an improper list with fewer elements than places.
A 1set form produces the value of sequence-expr as its result value.
9.28.18 Macro upd
Syntax:
(upd place opip-arg*)
Description:

The upd macro evaluates place and passes the value as an argument to the operational pipeline
function formed, as if by the opip macro, from the opip-arg arguments. The result of this
function is then stored back into place.

The following equivalence holds, except that place p is evaluated only once:

(upd Pp Xy 2 ...) <—-—> (set p (call (opip xy z ...) pP))

9.29 User-Defined Places and Place Operators

TXR Lisp provides a number of place-modifying operators such as set, push, and inc. It also provides
a variety of kinds of syntactic places which may be used with these operators.

Both of these categories are open-ended: TXR Lisp programs may extend the set of place-modifying oper-
ators, as well as the vocabulary of forms which are recognized as syntactic places.

Regarding place operators, it might seem obvious that new place operators can be developed, since they are
macros, and macros can expand to uses of existing place operators. As an example, it may seem that inc

operator could be written as a macro which uses set:

(defmacro new—-inc (place : (delta 1))

Utility Commands 2021-07-12 368

TXR(1) TXR Programming Language TXR(1)

" (set ,place (+ ,place ,delta)))

However, the above new—inc macro has a problem: the place argument form is inserted into two places
in the expansion, which leads to two evaluations. This is visibly incorrect if the place form contains any
side effects. It is also potentially inefficient.

TXR Lisp provides a framework for writing place update macros which evaluate their argument forms
once, even if they have to access and update the same places.

The framework also supports the development of new kinds of place forms as capsules of code which intro-
duce the right kind of material into the lexical environment of the body of an update macro, to enable this
special evaluation.

9.29.1 Place-Expander Functions

The central design concept in TXR Lisp syntactic places are place-expander functions. Each compound
place is defined by up to three place-expander functions, which are associated with the place via the left-
most operator symbol of the place form. One place-expander, the update expander, is mandatory. Option-
ally, a place may also provide a clobber expander as well as a delete expander. An update expander pro-
vides the expertise for evaluating a place form once in its proper run-time context to determine its actual
run-time storage location, and to access and modify the storage location. A clobber expander provides an
optimized mechanism for uses that perform a one-time store to a place without requiring its prior value. If
a place definition does not supply a clobber expander, then the syntactic places framework uses the update
expander to achieve the functionality. A delete expander provides the expertise for determining the actual
run-time storage location corresponding to a place, and obliterating it, returning its prior value. If a place
does not supply a delete expander, then the place does not support deletion. Operators which require dele-
tion, such as del will raise an error when applied to that place.

The expanders operate independently, and it is expected that place-modifying operators choose one of the
three, and use only that expander. For example, accessing a place with an update expander and then over-
writing its value with a clobber expander may result in incorrect code which contains multiple evaluations
of the place form.

The programmer who implements a new place does not write expanders directly, but rather defines them via
the defplace, define—accessor or defset macro.

The programmer who implements a new place update macro likewise does not call the expanders directly.
Usually, they are invoked via the macros with-update-expander, with-clobber-expander
and with-delete-expander. These are sufficient for most kind of macros. In certain complicated
cases, expanders may be invoked using the wrapper functions call-update-expander, call-
clobber-expander and call-delete-expander. These convenience macros and functions per-
form certain common chores, like macro-expanding the place in the correct environment, and choosing the
appropriate function.

The expanders are described in the following sections.

9.29.2 The Update Expander
Syntax:

(lambda (getter-sym setter—-sym place—form
body—-form) ...)

Description:

The update expander is a code-writer. It takes a body—-form argument, representing code, and

Utility Commands 2021-07-12 369

TXR(1)

TXR Programming Language TXR(1)

returns a larger form which surrounds this code with additional code.

This larger form returned by the update expander can be regarded as having two abstract actions,
when it is substituted and evaluated in the context where place—-form occurs. The first abstract
action is to evaluate place-form exactly one time, in order to determine the actual run-time
location to which that form refers. The second abstract action is to evaluate the caller’s body—
forms, in a lexical environment in which bindings exist for some lexical functions or (more usu-
ally) lexical macros. These lexical macros are explicitly referenced by the body-form; the
update expander just provides their definition, under the names it is given via the getter—-sym
and setter—-symarguments.

The update expander writes local functions or macros under these names: a getter function and a
setter function. Usually, update expanders write macros rather than functions, possibly in combi-
nation with some lexical anonymous variables which hold temporary objects. Therefore the getter
and setter are henceforth referred to as macros.

The code being generated is with regard to some concrete instance of place-form. This argu-
ment is the actual form which occurs in a program. For instance, the update expander for the car
place might be called with an arbitrary variant of the pIlace-form which might look like (car
(inc (third some-1list))).

In the abstract semantics, upfront code wrapped around the body—-form by the update expander
provides the logic to evaluate this place to a location, which is retained in some hidden local con-
text.

The getter local macro named by get ter—-sym must provide the logic for retrieving the value of
this place. The getter macro takes no arguments. The body-form makes free use of the getter
function; they may call it multiple times, which must not trigger multiple evaluations of the origi-
nal place form.

The setter local macro named by setter-sym must generate the logic for storing a new value
into the once-evaluated version of place—-form. The setter function takes exactly one argument,
whose value specifies the value to be stored into the place. It is the caller’s responsibility to ensure
that the argument form which produces the value to be stored via the setter is evaluated only once,
and in the correct order. The setter does not concern itself with this form. Multiple calls to the set-
ter can be expected to result in multiple evaluations of its argument. Thus, if necessary, the caller
must supply the code to evaluate the new value form to a temporary variable, and then pass the
temporary variable to the setter. This code can be embedded in the body—form or can be added
to the code returned by a call to the update expander.

The setter local macro or function must return the new value which is stored. That is to say, when
body-form invokes this local macro or function, it may rely on it yielding the new value which
was stored, as part of achieving its own semantics.

The update expander does not macro-expand place-form. It is assumed that the expander is
invoked in such a way that the place has been expanded in the correct environment. In other words,
the form matches the type of place which the expander handles. If the expander had to macro-
expand the place form, it would sometimes have to come to the conclusion that the place form
must be handled by a different expander. No such consideration is the case: when an expander is
called on a form, that is final; it is certain that it is the correct expander, which matches the symbol
in the car position of the form, which is not a macro in the context where it occurs.

An update expander is free to assume that any place which is stored (the setter local macro is
invoked on it) is accessed at least once by an invocation of the getter. A place update macro which

Utility Commands 2021-07-12 370

TXR(1)

TXR Programming Language TXR(1)

relies on an update expander, but uses only the store macro, might not work properly. An example
of an update expander which relies on this assumption is the expander for the (force prom-
ise) place type. If promise has not yet been forced, and only the setter is used, then prom-
ise might remain unforced as its internal value location is updated. A subsequent access to the
place will incorrectly trigger a force, which will overwrite the value. The expected behavior is that
storing a value in an unforced force place changes the place to forced state, preempting the eval-
uation of the delayed form. Afterward, the promise exhibits the value which was thus assigned.

The update expander is not responsible for all issues of evaluation order. A place update macro
may consist of numerous places, as well as numerous value-producing forms which are not places.
Each of the places can provide its registered update expander which provides code for evaluating
just that place, and a means of accessing and storing the values. The place update macro must call
the place expanders in the correct order, and generate any additional code in the correct order, so
that the macro achieves its required documented evaluation order.

Example Update Expander Call:

;; First, capture the update expander
;7 function for (car ...) places
;7 in a variable, for clarity.

(defvar car—-update-expander [*place—-update—-expander* ’‘car])

;7 Next, call it for the place (car [a 0]).
;7 The body form specifies logic for

;7 incrementing the place by one and

;7 returning the new value.

(call car-update-expander "getit ’setit ' (car [a O0])
" (setit (+ (getit) 1)))

;7 ——> Resulting code:

(rlet ((#:90032 [a 0]))
(macrolet ((getit nil
(append (list ’'car) (list ’"#:90032)))
(setit (val)
(append (list ’sys:rplaca)
(list "#:90032) (list wval))))
(setit (+ (getit) 1))))

;7 Same expander call as above, with a call to expand added
;; to show the fully expanded version of the returned code,
;7 in which the ;; setit and getit calls have disappeared,
;7 replaced by their macro-expansions.

(expand
(call car-update-expander "getit ’setit ' (car [a O0])
' (setit (+ (getit) 1))))

;7 ——> Resulting code:

(let ((#:90032 [a 0]))
(sys:rplaca #:90032 (+ (car #:90032) 1)))

Utility Commands 2021-07-12 371

TXR(1) TXR Programming Language TXR(1)

The main noteworthy points about the generated code are:

- the (car [a O0]) place is evaluated by evaluating the embedded form [a 0] and
storing storing the resulting object into a hidden local variable. That’s as close a refer-
ence as we can make to the car field.

- the getter macro expands to code which simply calls the car function on the cell.

- the setter uses a system function called sys:rplaca, which differs from rplaca in
that it returns the stored value, rather than the cell.

9.29.3 The Clobber Expander
Syntax:

(lambda (simple-setter-sym place-form
body-form) ...)

Description:

The clobber expander is a code-writer similar to the update expander. It takes a body-form
argument, and returns a larger form which surrounds this form with additional program code.

The returned block of code has one main abstract action. It must arrange for the evaluation of
body-form in a lexical environment in which a lexical macro or lexical function exists which
has the name requested by the simple-setter—-symargument.

The simple setter local macro written by the clobber expander is similar to the local setter written
by the update expander. It has exactly the same interface, performs the same action of storing a
value into the place, and returns the new value.

The difference is that its logic may be considerably simplified by the assumption that the place is
being subject to exactly one store, and no access.

A place update macro which uses a clobber expander, and calls it more than once, break the
assumption; doing so may result in multiple evaluations of the place—form.

9.29.4 The Delete Expander
Syntax:

(lambda (deleter-sym place—-form
body-form) ...)

Description:

The delete expander is a code-writer similar to clobber expander. It takes a body—-form argu-
ments, and returns a larger form which surrounds this form with additional program code.

The returned block of code has one main abstract action. It must arrange for the evaluation of
body-form in a lexical environment in which a lexical macro or lexical function exists which
has the name requested by the deleter-sym argument.

The deleter macro written by the clobber expander takes no arguments. It may be called at most

once. It returns the previous value of the place, and arranges for its obliteration, whatever that
means for that particular kind of place.

Utility Commands 2021-07-12 372

TXR(1)

TXR Programming Language TXR(1)

9.29.5 Macro with-update—-expander

Syntax:

(with-update-expander (getter setter) place env
body—-form)

Description:

The with-update-expander macro evaluates the body—-form argument, whose result is
expected to be a Lisp form. The macro adds additional code around this code, and the result is
returned. This additional code is called the place-access code.

The getter and setter arguments must be symbols. Over the evaluation of the body—-form,
these symbols are bound to the names of local functions which are provided in the place-access
code.

The place argument is a form which evaluates to a syntactic place. The generated place-access
code is based on this place.

The env argument is a form which evaluates to a macro-expansion-time environment. The
with-update-expander macro uses this environment to perform macro-expansion on the
value of the place form, to obtain the correct update expander function for the fully macro-
expanded place.

The place-access code is generated by calling the update expander for the expanded version of
place.

Example:

The following is an implementation of the swap macro, which exchanges the contents of two
places.

Two places are involved, and, correspondingly, the with-update-expander macro is used
twice, to add two instances of place-update code to the macro’s body.

(defmacro swap (place-0 place-1 :env env)
(with—-gensyms (tmp)
(with-update-expander (getter-0 setter-0) place-0 env
(with-update-expander (getter-1 setter-1) place-1 env
“(let ((,tmp (,getter-0)))
(,setter-0 (,getter-1))
(,setter-1 ,tmp))))))

The basic logic for swapping two places is contained in the code template:

“(let ((,tmp (,getter-0)))
(,setter-0 (,getter-1))
(,setter-1 ,tmp))

The temporary variable named by the gensym symbol tmp is initialized by calling the getter
function for pIlace—-0. Then the setter function of pIlace-0 is called in order to store the value
of place-1 into place-0. Finally, the setter for place-1 is invoked to store the previously
saved temporary value into that place.

The name for the temporary variable is provided by the with-gensyms macro, but establishing
the variable is the caller’s responsibility; this is seen as an explicit let binding in the code

Utility Commands 2021-07-12 373

TXR(1) TXR Programming Language TXR(1)

template.

The names of the getter and setter functions are similarly provided by the with-update-
expander macros. However, binding those functions is the responsibility of that macro. To
achieve this, it adds the place-access code to the code generated by the ~ (1let ...) backquote
template. In the following example macro-expansion, the additional code added around the tem-
plate is seen. It takes the form of two macrolet binding blocks, each added by an invocation of
with-update-expander:

(macroexpand ' (swap a b))

-——>

(macrolet ((#:90036 () 'a) ;; getter macro for a
(#:90037 (val-expr) ;; setter macro for a

(append (list ’sys:setqg) (list ’a)

(list val-expr))))
(macrolet ((#:90038 () ’'Db) ;7 getter macro for b
(#:90039 (val-expr) ;; setter macro for b
(append (list ’sys:setqg) (list ’'Db)
(list val-expr))))

(let ((#:90035 (#:90036))) ;; temp <- a
(#:90037 (#:90038)) ;5 a <-Db
(#:90039 #:90035)))) ;; b <— temp

In this expansion, for example #:g0036 is the generated symbol which forms the value of the
getter-0 variable in the swap macro. The getter is a macro which simply expands to a a:
straightforward access to the variable a. The #:g0035 symbol is the value of the tmp variable.
Thus the swap macro’s ~ (let ((,tmp (,getter-0))) ...) has turned into ~ (let
((#:90035 (#:90036))) ...)

A full expansion, with the macrolet local macros expanded out:
(expand ' (swap a b))
—-—>

(let ((#:90035 a))
(sys:setg a b)
(sys:setg b #:90035))

In other words, the original syntax (, getter—0) became (#:9g0036) and finally just a.

Similarly, (, setter-0 (,getter-1)) became the macrolet invocations (#:g0037
(#:90038)) which finally turned into: (sys:setqg a b).

9.29.6 Macro with—-clobber—-expander
Syntax:

(with-clobber-expander (simple-setter) place env
body—-form)

Description:

The with-clobber-expander macro evaluates body—form, whose result is expected to be

Utility Commands 2021-07-12 374

TXR(1)

TXR Programming Language TXR(1)

a Lisp form. The macro adds additional code around this form, and the result is returned. This
additional code is called the place-access code.

The simple-setter argument must be a symbol. Over the evaluation of the body—form, this
symbol is bound to the name of a functions which are provided in the place-access code.

The place argument is a form which evaluates to a syntactic place. The generated place-access
code is based on this place.

The env argument is a form which evaluates to a macro-expansion-time environment. The
with-clobber-expander macro uses this environment to perform macro-expansion on the
value of the place form, to obtain the correct update expander function for the fully macro-
expanded place.

The place-access code is generated by calling the update expander for the expanded version of
place.

Example:

The following implements a simple assignment statement, similar to set except that it only han-
dles exactly two arguments:

(defmacro assign (place new-value :env env)
(with-clobber-expander (setter) place env
"~ (,setter ,new-value)))

Note that the correct evaluation order of place and new-value is taken care of, because
with-clobber-expander generates the code which performs all the necessary evaluations of
place. This evaluation occurs before the code which is generated by ~ (, setter ,new-
value) partis evaluated, and that code is what evaluates new-value.

Suppose that a macro were desired which allows assignment to be notated in a right to left style, as
in:

(assign 42 a) ;; Store 42 in variable a

Now, the new value must be evaluated prior to the place, if left-to-right evaluation order is to be
maintained. The standard push macro has this property: the push value is on the left, and the
place is on the right.

Now, the code has to explicitly take care of the order, like this:

;7 WRONG! We can’t just swap the parameters;
;7 place is still evaluated first, then new-value:

(defmacro assign (new-value place :env env)
(with-clobber-expander (setter) place env
" (,setter ,new-value)))

;7 Correct: arrange for evaluation of new-value first,
;7 then place:

(defmacro assign (new-value place :env env)
(with-gensym (tmp)
“(let ((,tmp ,new-value))

Utility Commands 2021-07-12 375

TXR(1)

TXR Programming Language TXR(1)

, (with-clobber-expander (setter) place env
" (,setter ,tmp)))))

9.29.7 Macro with-delete—-expander

Syntax:

(with-delete-expander (deleter) place env
body—-form)

Description:

The with-delete-expander macro evaluates body—rform, whose result is expected to be a
Lisp form. The macro adds additional code around this code, and the resulting code is returned.
This additional code is called the place-access code.

The deleter argument must be a symbol. Over the evaluation of the body—form, this symbol
is bound to the name of a functions which are provided in the place-access code.

The place argument is a form which evaluates to a syntactic place. The generated place-access
code is based on this place.

The env argument is a form which evaluates to a macro-expansion-time environment. The
with-delete-expander macro uses this environment to perform macro-expansion on the
value of the place form, to obtain the correct update expander function for the fully macro-
expanded place.

The place-access code is generated by calling the update expander for the expanded version of
place.

Example:

The following implements the de 1 macro:

(defmacro del (place :env env)
(with-delete-expander (deleter) place env
" (,deleter)))

9.29.8 Function call-update-expander

Syntax: